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Electric cars are projected to become the vehicles of the future. A major barrier for their

expansion is range anxiety stemming from the limited range a typical EV can travel. EV batteries’

performance and capacity are affected by many factors. In particular, the decrease in ambient

temperature below a certain threshold will adversely affect the battery’s efficiency. This research

develops deterministic and two-stage stochastic program model for charging stations’ optimal

location to facilitate the routing decisions of delivery services that use EVs while considering the

variability inherent in climate and customer demand. To evaluate the proposed formulation and

solution approach’s performance, Fargo city in North Dakota is selected as a tested.

For the first chapter, we formulated this problem as a mixed-integer linear programming

model that captures the realistic charging behavior of the DCFC’s in association with the ambient

temperature and their subsequent impact on the EV charging station location and routing decisions.

Two innovative heuristics are proposed to solve this challenging model in a realistic test setting,

namely, the two-phase Tabu Search-modified Clarke and Wright algorithm and the Sweep-based
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Iterative Greedy Adaptive Large Neighborhood algorithm. The results clearly indicate that the

EV DCFC charging station location decisions are highly sensitive to the ambient temperature, the

charging time, and the initial state-of-charge. The results provide numerous managerial insights

for decision-makers to efficiently design and manage the DCFC EV logistic network for cities that

suffer from high-temperature fluctuations.

For the second chapter, a novel solution approach based on the progressive hedging algorithm

is presented to solve the resulting mathematical model and to provide high-quality solutions within

reasonable running times for problems with many scenarios. We observe that the location-routing

decisions are susceptible to the EV logistic’s underlying climate, signifying that decision-makers of

the DCFC EV logistic network for cities that suffer from high-temperature fluctuations would not

overlook the effect of climate to design and manage the respective logistic network efficiently.
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CHAPTER I

DETERMINISTIC ELECTRIC VEHICLES FAST CHARGER LOCATION ROUTING

PROBLEM UNDER AMBIENT TEMPERATURE

1.1 Introduction

In recent years, electrical vehicles (EV) have become an essential part of the manufacturing

sector as the global day-by-day forced to future less dependent on nonrenewable fuel sources [61].

Sustainable transportation requires multiple efforts from different stakeholders (e.g., governments,

car manufacturers, environmental advocates, and customers) to reduce the consumption of non-

renewable resources (e.g., oil, coal, and gas). EV owners will increase to around 126 million in

2030 globally and 18.7 million in the USA [61]. As more EVs take to the road, the charging

station system needs to be expanded accordingly. The large-scale adoption of EVs cannot be fully

realized without the adequate deployment of publicly accessible charging stations. The problem

of optimally locating the EV charging stations is not trivial due to simultaneous consideration of

many factors, such as range anxiety, uncertainty in dwell time, frequency of charging, state of

charge (SOC), and finally varieties of charging needs by different users (e.g., residential, visitors,

employee, the fleet users) [13]. Even though separate or a combination of them is accounted for

by a number of recent studies, none of the prior studies examined the impact of weather (e.g., hot

or cold weather conditions) in designing the logistic network for the EV DCFC charging stations

[97, 95].

1



www.manaraa.com

EVs are typically equipped with small battery packs that can only offer a very limited driving

range per charge. Cold temperature can significantly reduce the charging rate, which consequently

prolongs the charging duration. Further, due to continuous heating needs in cold regions, the

battery packs of EVs are always under stress, which substantially degrades the battery performance

over time. A recent study from Idaho National Laboratory (INL) reported that the SOC of a 30-

minute DC fast chargers (DCFC) could drop by as large as 36% from warm temperature (25◦�) to

cold temperature (0◦�) [65], indicating the sensitivity of EVs routing performance in cold regions.

Further, a number of relevant recent studies demonstrate that the performance of the Lithium-ion

(Li-ion) battery is sensitive to the ambient weather (e.g., [18, 33, 32, 52]). Although very relevant,

the temperature effect on EVs fast-charging is not considered and extensively examined. Thus,

considering the effects of ambient temperature, specifically in the geographic areas that suffer from

fluctuating temperatures throughout the year, on the EVsmobility network’s planning is imperative.

To fulfill this knowledge gap, our study extends the traditional location-routing problems to

develop an innovative mathematical model that examines the impact of ambient temperature on

the EV DCFC charging station locations and the associated routing decisions. Given the problem

is an extension of the traditional location-routing problems, which are already known to be an

NP-hard problem [70], we propose to develop two innovative heuristics, namely, the two-phase

Tabu Search-modified Clarke and Wright and the Sweep based Iterated Greedy Adaptive Large

Neighborhood algorithm, to efficiently solve the proposed model in a reasonable timeframe. The

performance of the solution algorithms is validated via a series of computational experiments.

In addition to proposing the mathematical model and the solution approaches, we demonstrate

a real-life case study using the EV logistics network of Fargo city in North Dakota. The results

2
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demonstrate the impact of ambient temperature on the EVDCFC location-routing decisions, which

provide a number of managerial insights for efficiently designing and managing the EV logistic

network in cities suffering from high-temperature fluctuations.

The exposition of this paper is as follows. Section 1.2 details the relevant literature review.

Sections 2.3 and 2.4 introduce the proposed mathematical model formulation and the solution

approaches. Finally, Section 2.5 presents the numerical experiments under different settings to

assess the performance of our proposed methodologies. This study is providing a number of future

research directions present in Chapter 3.

1.2 Literature Review

EV logistic literature, although it considers the charging station deployment along with the

routing decisions, the effects of the ambient temperature on the maximum driving range of the

EVs, which could potentially affect both the location-routing decisions, have not been adequately

addressed. Most of the past studies assumed constant ambient temperature to simplify themodeling

and computational efforts further. As this study is an extension of the location-routing problem to

the EV area, which accounts for realistic features such as the impact of ambient temperature in the

EVs’ recharging process, we will first provide a detailed review of these problems.

Location-routing problems (LRP) simultaneously handle strategic-level (e.g., locating the

charging stations) and operational-level (e.g., EV routing plans) decisions under the same decision-

making framework. Quite a few variants of the LRP studies are available in the literature, such

as single vs. multiple depots (e.g., [93],[103]), capacities on depots or vehicles (e.g., [51, 87]),

and the time window restriction for the deliveries (e.g., [101, 21]). A comprehensive review

3
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of the LRP can be found in [67] and [72]. Due to the challenges associated with solving LRP

in commercial solvers (e.g., GUROBI/CPLEX), most of the past studies only able to find exact

solutions to medium-sized capacitated or uncapacitated LRPs. The branch and bound algorithm,

proposed by Laporte and Norbert [46], is considered the first study to provide an exact solution for

an LRP consisting of only a depot and customers ranging from 20 to 50. In another study, Laporte

et al. [47] developed a branch and cut algorithm to solve an uncapacitated LRP with 20 customers

and 8 depots. Belenguer et al. [8] developed a new branch and cut algorithm, with a family of

problem-specific valid inequalities, to exactly solve an uncapacitated LRP with 20-88 customers

and 5-10 potential depots. Baldacci et al. [7] utilized set partitioning problems to reformulate the

LRP, which then solved exactly by introducing a set of lower bounding techniques. The authors

could solve the LRP up to 199 customers and 15 potential depot locations. Besides proposing

the exact approaches, several heuristics are developed to solve realistic-size test instances in a

reasonable timeframe. These heuristics decompose the LRP into two subproblems based upon the

two decision levels, attempt to solve LRP sequentially and provide quality feasible solutions for

large instances. For instance, Tuzun and Burke [88] developed a two-phase tabu search heuristic

to solve an uncapacitated LRP. Wu et al. [93] combined a tabu search algorithm with a simu-

lated annealing algorithm to solve a capacitated LRP. Prins et al. [71] developed a cooperative

Lagrangian relaxation-granular tabu search heuristic to solve a capacitated LRP. Koç et al. [41]

first introduced a family of valid inequalities and then developed a hybrid evolutionary algorithm,

namely, the location-heterogeneous adaptive large neighborhood search procedure, to solve an LRP

with heterogeneous fleet and time windows. Zhao et al. [106] proposed an iterated local search

algorithm to solve an LRP with simultaneous pickup and delivery. Likewise, different heuristic

4
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techniques are utilized to solve LRP applied in various applications, such as genetic algorithm with

a new chromosome structure to solve a multimodal transportation network problem [22], variable

neighborhood search algorithm along with a simulated annealing algorithm to solve a solid waste

management problem [6], and many others.

Rather than adopting aLRP approach, another streamof research utilizes themaximumcovering

approach such that ? refueling stations are opened to maximize the feasible round-trips between a

set of source-destination pairs. This approach, proposed by Kuby and Kim [42], is referred to as the

flow refueling location model (FRLM). Following this innovative approach, a number of extensions

of the uncapacitated FRLMaremade available, such as locatingmultiple facilities on the paths [43],

capacitated FRLM [89], robust-counterpart of FRLMwith battery-swapping network infrastructure

and management [55], and capabilities for EV of making intentional deviation from the associated

shortest path to refuel their batteries [40]. Besides adopting the FRLM approach, Mirchandani et

al. [63] proposed a new formulation to capture the fleet scheduling and battery-swapping station

in EV logistics. This study applies the shortest path concept to the EV routing problem such

that several EVs with limited driving range could satisfy the customer demand in a single depot

network. Yang and Sun [98] proposed a mathematical model for EV battery-swap stations-based

LRP such that the EVs could revisit the same swapping stations multiple times. Schneider et

al. [82] proposed an efficient heuristic to solve an EV LRP with a time window. Schiffer and

Walther [81] proposed an EV LRP formulation with time windows capable of addressing a whole

range of recharging options such as charging at customer sites and unique vertices, partial and full

recharging. Most recently, Zhang et al. [105] proposed a hybrid heuristic algorithm that combines

the binary particle swarm optimization with the variable neighborhood search to solve an EV LRP

5
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under stochastic customer demand. Hof et al. [31] proposed an Adaptive Variable Neighborhood

Search algorithm to solve a battery swap station-based LRP with capacitated EVs. Li et al. [50]

proposed a bi-level programming approach, where the upper-level locates the charging stations

and the lower-level decides the optimal routing plan to efficiently deploy the public recharging

infrastructure in a given region.

Despite these notable developments, past studies (e.g., [104, 15, 102, 75, 73, 77, 34]), especially

the studies that modeled the DCFC LRPs, ignore climate variability on location-routing decisions.

A recent study byMotoaki et al. [65] showed that the ambient temperature could heavily impact the

DCFC charging rate. The authors stressed that considering the ambient temperature in designing

the EV DCFC infrastructure in large countries like the US, where the regional climate varies

significantly, could not be neglected. Unfortunately, most of the past studies (e.g., [104, 15, 102,

75, 73, 77, 34]) assume that the charging process of the EVs, i.e., charging rate, as a constant factor

in their formulation; hence, the obtained results for the EV logistics might be altered. To fill this

gap in the literature, this study extends the traditional LRPs to account for the impact of ambient

temperature on the DCFC infrastructure deployment and the associated EV routing decisions.

1.3 Mathematical Model Formulation

Because of the scarce research streams that include the ambient temperature, we start introduc-

ing the EV faster charger location-routing problem and discuss the potential interactions among

simultaneous routing and siting decisions with the ambient temperature. Thus, in this section, we

first proceed with the basic mathematical model formulation, referred to as [EV], and then proceed

to describe the model extension, referred to as [EV-L]. Finally, a number of variable fixing and

6
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valid inequalities are introduced in an attempt to improve the computational performance of model

[EV-L].

1.3.1 Basic Model Formulation: [EV]

In this sub-section, the EV basic mathematical formulation ([EV]) is introduced as a mixed-integer

linear programming (MILP) model. We assume that there exists a linear relationship between the

(8) travel distance and the energy consumption and (88) recharging time with the amount of energy

recharged. Figure 1.1 delineates a simplified pictorial representation of the problem. Below is a

summary of the sets, parameters, and decision variables of the optimization model. Our objective

function is described in Section 1.3.1.1 and the constraints are introduced in Section 1.3.1.2.

Sets:

• �: set of customers, indexed by 8 ∈ �

• �: set of potential charging station locations, indexed by 9 ∈ �

• � : set of electrical vehicles, indexed by 4 ∈ �

• {>, >′}: single depot and it’s copy

• #: set of all nodes, indexed by = ∈ # , where # = � ∪ � ∪ {>, >′}

Parameters:

• 5 9 : cost of installing a new charging station 9 ∈ �

• 38 9 : distance between node 8 ∈ # and 9 ∈ #

• 28 9 4: shipping cost per unit of distance between node 8 ∈ # to 9 ∈ # via EV 4 ∈ �

• F8: demand weight for costumer 8 ∈ �

• :4: weight capacity of EV 4 ∈ �

7
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• B>2: state of charge (SOC, in %) of an EV after getting charged in a DCFC station

• B>20: initial SOC (%) of an EV at depot

• q: conversion rate of vehicle 4 ∈ � which is utilized to convert the state of charge to the

respective maximum driving distance that an EV can travel after getting charged

• ": a big number

• 3<0G: the upper bound of driving distance once EVs are fully charged, where 3<0G ≥ B>2

Decision Variables:

• - 9 : 1 if a charging station is built in 9 ∈ �; 0 otherwise

• .8 9 4: 1 if EV 4 ∈ � traverses from node 8 ∈ # to 9 ∈ #; 0 otherwise

• '8 9 4: remaining weight capacity of 4 ∈ � when it arrives node 8 ∈ # after leaving node

9 ∈ #

• �1
=4: the maximum distance that the remaining battery power allows when EV 4 ∈ � arrives

at node = ∈ #

• �2
=4: the maximum distance that the remaining battery power allows when EV 4 ∈ � leaves

node = ∈ #

8
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Figure 1.1

A simplified pictorial representation of the problem

1.3.1.1 Objective Function

The objective function of [EV] minimizes the total cost associated with opening EV charging

stations and the driving distance costs within a planning horizon. The mathematical formulation

is detailed as follows:

[EV] "8=8<8I4
Facility Cost∑
9∈�

5 9- 9︸    ︷︷    ︸ +
Total Driving Distance Cost∑
8∈#

∑
9∈#

∑
4∈�

28 9 438 9.8 9 4︸                     ︷︷                     ︸ (1.1)

1.3.1.2 Constraints

Model [EV] is subject to a set of constraints, which are outlined below.
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∑
=∈#∉{>′}

∑
4∈�

.=84 = 1 ∀8 ∈ � (1.2)∑
=∈#∉{>′},=≠ 9

∑
4∈�

.= 94 ≤ "- 9 ∀ 9 ∈ � (1.3)∑
=
′∈#∉{>},=′≠=

.==′4 −
∑

=
′∈#∉{>′},=′≠=

.=′=4 = 0 ∀= ∈ # ∉
{
>, >

′
}
, 4 ∈ � (1.4)∑

=∈#∉{>}
.>=4 −

∑
=∈#∉{>′}

.=>4 = 0 ∀4 ∈ � (1.5)∑
=∈#∉{>}

.>=4 ≤ 1 ∀4 ∈ � (1.6)∑
=∈#∉{>′ , 9}

'= 94 =
∑

=∈#∉{>, 9}
' 9=4 ∀ 9 ∈ �,∀4 ∈ � (1.7)
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∑
=∈#∉{>,8}

'8=4 ≤
∑

=∈#∉{>′ ,8}
'=84 − F8

∑
=∈#∉{>′ ,8}

.=84

+ :4 (1 −
∑

=∈#∉{>′ ,8}
.=84) ∀8 ∈ �,∀4 ∈ � (1.8)

0 ≤ '==′4 ≤ :4.==′4 ∀= ∈ # ∉
{
>
′
}
,

=
′ ∈ # ∉ {>} , = ≠ =′, 4 ∈ � (1.9)

�1
=
′
,4
+ 3==′.==′4 ≤ �2

=4 + 3<0G (1 − .==′4) ∀= ∈ # ∉
{
>
′
}
,

=
′ ∈ # ∉ {>} , =′ ≠ =, 4 ∈ � (1.10)

�1
=
′
4
+ 3==′.==′4 ≥ �2

=,4 − 3<0G (1 − .==′4) ∀= ∈ # ∉
{
>
′
}
,

=
′ ∈ # ∉ {>} , =′ ≠ =, 4 ∈ � (1.11)

�2
>4 = qB>20 ∀4 ∈ � (1.12)

�2
9 4 = qB>2- 9 ∀ 9 ∈ �, 4 ∈ � (1.13)

�1
84 = �2

84 ∀8 ∈ �, 4 ∈ � (1.14)

'8 9 4, �
1
=4, �

2
=4 ≥ 0 ∀(8, 9) ∈ #, = ∈ #, 4 ∈ � (1.15)

- 9 , .8 9 4 ∈ {0, 1} ∀8 ∈ #, 9 ∈ #, 4 ∈ � (1.16)

Constraints (1.2) ensure that each customer site 8 ∈ � is visited by exactly one EV. Constraints

(1.3) ensure that EVs could get recharged at a specific charging station 9 ∈ � if only it is located.

Constraints (1.4) enforce the flow balance for each EV’s 4 ∈ � in the customer sites and the

charging stations. Constraints (1.5) guarantee that a utilized EV 4 ∈ � should return to the depot at

the end of the respective trip. Constraints (1.6) limit the number of trips that an EV 4 ∈ � can start
11
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from the depot. Constraints (1.7) ensure that at any charging station 9 ∈ �, the remaining weight

capacity of the EVs does not change (F 9 = 0;∀ 9 ∈ �). Constraints (1.8) update the remaining

weight capacity of the EVs based on the nodes visited. Constraints (1.9) enforce that the remaining

weight capacity of the EVs is less than the EV maximum weight capacity and also be greater than

zero in all the visited nodes by the EVs. Constraints (1.10) and (1.11) update the battery power

level of the EVs based on the nodes visited. Constraints (1.12) and (1.13) detail the SOC when

the EV 4 ∈ � starts its trip from the depot and when it visits a charging station. Constraints (1.14)

ensure that the battery level of the EVs 4 ∈ � remains unchanged when they visit a customer node

8 ∈ � in the network. Constraints (1.15) and (1.16) enforce nonnegativity and binary resrictions for

the decision variables.

1.3.2 Model Extension: [EV-L]

Model [EV] assumes that the SOC of a fast charger drops linearly. However, the actual fast charging

process is non-linear and is a function of initial SOC and ambient temperature [65]. The simplified

linearized SOC assumption may provide an overestimated duration for the DCFC’s. As such, the

resulting model, as in the case with [EV], may overestimate the EV fast charger location-routing

decisions. This sub-section introduces model [EV-L] by alleviating this drawback from model

[EV].

Let us define ˆB>2(2, C) to predict the SOC of an EV 4 ∈ � , which is a function of charging

time C and ambient temperature 2 (in >Celsius). We further define _0, _1, _2 to be the coefficient

estimates, and B>20 the initial value of the SOC of an EV. Inspired from the study of [65], the

following SOC estimation is provided.

12
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ˆB>2(2, C) =
(
B>20 +

_0 + _12

_2

)
4_2C −

(
_0 + _12

_2

)

After simplification, the above equation becomes:

ˆB>2(2, C) = 4_2CB>20 +
(
_0 + _12

_2

)
(4_2C − 1)

The ambient temperature is constant for all vehicles while they are in the charging process.

We now replace the 4_2C and
(
_0+_12
_2

)
(4_2C − 1) terms by `1 and `2, respectively, and obtained the

following equation.

ˆB>2(2, C) = `1B>20 + `2 (1.17)

When an EV 4 ∈ � arrives at a charging station, �1
9 4
captures the maximum distance that the

EV can keep driving. Using the conversion rate (q), the initial SOC (B>20) of an EV at a charging

station 9 ∈ � can be defined as follows:

B>20 × q = �1
9 4 −→ B>20 =

�1
9 4

q
(1.18)

Plugging (1.18) into (1.17), we obtain the following equation:

ˆB>2(2, C) = `1

(
�1
9 4

q

)
+ `2 (1.19)

Now, plugging (1.19) into constraints (1.13), we obtain the following:

�2
9 4 ≤ B>2q- 9 → �2

9 4 ≤
(
`1
�1
9 4

q
+ `2

)
q- 9 → �2

9 4 ≤ `1�
1
9 4- 9 + `2q- 9 ∀ 9 ∈ �, 4 ∈ � (1.20)

13
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Constraints (1.20) is nonlinear due to the presence of a product term between variables �1
9 4
and

- 9 , namely, �1
9 4
- 9 . To linearize this product, we introduce a new variable {/ 9 4 |∀ 9 ∈ �, 4 ∈ �} to

replace the �1
9 4
- 9 term. Knowing that 3<0G is an upper bound for the �1

9 4
variable, the following

set of constraints are introduced.

/ 9 4 ≤ 3<0G- 9 ∀ 9 ∈ �, 4 ∈ � (1.21)

/ 9 4 ≤ �1
9 4 ∀ 9 ∈ �, 4 ∈ � (1.22)

/ 9 4 ≥ �1
9 4 − 3<0G

(
1 − - 9

)
∀ 9 ∈ �, 4 ∈ � (1.23)

/ 9 4 ≥ 0 ∀ 9 ∈ �, 4 ∈ � (1.24)

With this, model [EV] can be extended as follows, referred to as [EV-L]:

[EV-L] "8=8<8I4
∑
9∈�

5 9- 9 +
∑
8∈#

∑
9∈#

∑
4∈�

28 9 438 9.8 9 4 (1.25)

subject to: (1.2)-(1.12), (1.14)-(1.16), and (1.20)-(1.24).

1.3.3 Variable Fixing and Valid Inequalities

To improve the computational performance of model [EV-L], the following variable fixing and

valid inequalities are introduced. We begin by introducing the variable fixing techniques first.

• The electric vehicle 4 ∈ � is not able to traverse the arc between the nodes = ∈ # and =′ ∈ #

if the respective traveling distance, i.e., 38 9 is greater than the maximum distance that it can

travel by a fully charged battery, namely, 3<0G .

14
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.==′4 = 0 ∀= ∈ #, =′ ∈ #, 4 ∈ � |3==′ > 3<0G (1.26)

• The electric vehicle 4 ∈ � is not able to traverse the arc between the nodes = ∈ # and =′ ∈ #

if the sum of the demand of costumers in respective customer nodes exceeds the weight

capacity of the EV.

.==′4 = 0 ∀= ∈ #, =′ ∈ #, 4 ∈ � |F= + F=′ > :4 (1.27)

In addition to the above-mentioned variable fixing techniques, the following valid inequalities

are introduced.

• In our study, we assume that none of the EVs can travel more than 3CA8? each day. To capture

this constraint, we add the following valid inequalities as a lazy constraint to model [EV-L].

∑
=∈#

∑
=
′∈#

3==′.==′4 ≤ 3CA8? ∀4 ∈ � (1.28)

• To further tighten the proposed model [EV-L], first, we approximate a lower bound, namely,

# C>C0;
!�

, for the number of the EVs that are required to satisfy the customer demand. The

lower bound on the number of EVs depends on two other factors, namely, the total weight

associated with the requests of the costumers and maximum trip distance that each EV can

traverse. Hence, in order to calculate # C>C0;
!�

, first, we find out the minimum number of EVs

based on the freight limitation, # 5 A486ℎC

!�
. To do so, we use a well-known bin packing problem

[57] given by (1.29)-(1.33). Within this formulation, {/4 |∀4 ∈ �} denotes if EV 4 ∈ � is

used or not, and {�84 |∀8 ∈ �, 4 ∈ �} denotes if costumer 8 is served by EV 4.
15
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"8=8<8I4 #
5 A486ℎC

!�
=

∑
4∈�

/4 (1.29)

subject to

∑
8∈�

F8�84 ≤ :4/4 ∀4 ∈ � (1.30)∑
4∈�

F8�84 = 1 ∀8 ∈ � (1.31)

/4 ∈ {0, 1} ∀4 ∈ � (1.32)

�84 ∈ {0, 1} ∀8 ∈ �, 4 ∈ � (1.33)

The next lower bound on the number of EVs is based upon the maximum length of the trip,

#
CA8?

!�
, which utilizes the concept of the minimal spanning tree. To do so, given the feasible

arcs in the network, we create a minimal spanning tree for the network consisting of the depot

node and customer nodes, i.e., � ∪ {>}. The total weight of this graph, where the weight is

the traveling distance between vertices of the graph, provides us with an estimated minimum

overall traveling distance of 34BC . Hence, the second lower bound is computed as follow:

#
CA8?

!�
= ∗ 34BC

3CA8?
(1.34)

Having introduced these two lower bounds on the minimum number of required EVs, we

use the best among them in the MILP settings, as shown below:

# C>C0;!� = <0G{# 5 A486ℎC

!�
, #

CA8?

!�
} (1.35)
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Finally, to tighten the solution space of model [EV-L], we add the following valid inequality

as a lazy constraint.

∑
4∈4

∑
=
′∈#

.>=′4 ≥ # C>C0;!� (1.36)

1.4 Solution Methodology

Both basic ([EV]) and extended ([EV-L]) formulations developed in this study are indeed variants

of the classical location-routing problems (LRP) [46]. It is worth mentioning that if the driving

range of the EVs is a sufficiently large number, recharging the battery and constructing the charging

stations will be unnecessary; therefore, model [EV-L] can be reduced to the classic vehicle routing

problem (VRP) which is already known to be an NP-hard problem [42]. As such, our proposed

model [EV-L] can be considered as an NP-hard problem.

Our initial experimentation with the GUROBI solver exposes its inability to solve the largest

instances of problem [EV-L] in a reasonable timeframe, despite the additions of the variable

fixing and valid inequalities introduced in Section 1.3.1. Given NP-hard problems are hard or

impossible to be solved using exact methods in a reasonable computational time [36], this section

proposes two heuristic techniques, namely, the two-phase Tabu Search-modified Clarke andWright

Savings heuristic (TS-MCWS) and the Sweep-based IteratedGreedyAdaptive LargeNeighborhood

algorithm, to solve model [EV-L] efficiently.
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1.4.1 The TS-MCWS Heuristic

This sub-section details the proposed hybrid algorithm referred to as the TS-MCWS heuristic,

which combines the Tabu Search (TS) algorithm with a modified version of the Clarke and Wright

Savings method. Within this two-phase algorithm, the TS algorithm is used to determine the

location of the charging stations and then given the selected charging stations, the modified Clarke

and Wright Savings method is used to finding the routing decisions. Two algorithms collaborate

iteratively to provide an efficient solution for the model [EV-L].

1.4.1.1 A radius covering procedure for initial location of the charging stations

To start the TS algorithm and find the charging station locations, an initial solution for selecting

the charging stations is required. Let 32ℎ0A64 = q × ˆB>2(2, C) represents the driving range of

EVs after getting charged in a station after C minutes where the ambient temperature is 2 degree

Celcius. Further, let #� to represent the initial number of selected charging stations. The idea of

this procedure is to select #� stations that could cover as many as costumers within a radius of

A × 32ℎ0A64 from each candidate station, where 0 ≤ A ≤ 1 and is set to A ← 1
3 in this study. This

procedure is outlined as follows:

• Step 1: We generate a covering list (�!) for all the charging stations, which indicates the

respective number of the customers that are located within the radius of A × 32ℎ0A64 from

each charging station. To generate this list, we adopt two different strategies. In the first

strategy, all the customers within the mentioned radius are counted for all the charging

stations. However, in the second strategy, once a set of customers are covered by a specific

charging station, they are removed from the customer list for the rest of the charging stations.
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Before starting the TS procedure, first, we adopt the first strategy to come up with the initial

location of the charging stations, and in case if the current list of charging stations does not

lead to a feasible routing plan, we relocate the selected #� charging stations using the second

strategy.

• Step 2: Given the value of �! list for each candidate stations, we rank all the charging

stations in descending order.

• Step 3: The first #� stations based on the ordered �! list are selected as the initial location

of the charging stations.

1.4.1.2 The modified version of the Clarke and Wright Savings method

Once the location of the charging stations using either the radius covering procedure or the TS

algorithm is determined, we adopt a modified version of the Clarke and Wright Savings method to

determine the optimal routing decisions within the selected charging stations. The original Clarke

and Wright Savings method was first proposed by Clarke and Wright for classical VRP [11] and

then Erdogan et al. [20] introduced the modified version of the algorithm for the green-VRP. The

overall "�,( framework is outlined as follows:

• Step 1 (Initialization phase):

Step 1.1: For each of the customers, 8 ∈ �, a back and forth route using the depot and its

copy is generated (> − 8 − >′).

Step 1.2: The feasibility of each of the generated routes in the previous step is evaluated

with respect to the battery driving range limitation. Those routes that are feasible are added
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to feasible route set (�'(). However, for the routes in which the battery driving range is

violated, one of the located stations, say 91, with less insertion cost, is placed between the

depot and the customer, such as (>− 91−8−>
′). If the modified route is feasible, it is added to

the �'(; otherwise, another selected charging station, say 92, is added between the customer

and the copy of the depot, such as (>− 91− 8− 92−>
′). If the modified route is still infeasible,

it is discarded from the routing plan and added to infeasible route set (�'(); otherwise, it

is added to the �'(. If the �'( is empty, then we directly go to Step 2; otherwise, the

objective function of the infeasible routes in �'( are set to infinite.

• Step 2 (Route merge phase):

Step 2.1: For each pair of feasible routes in �'(, we compute the saving distances. First,

for each feasible route (: ∈ �'(), the two adjacent nodes (=1
:
, =2
:
) to the depot and its copy

are identified. Second, we create a saving pair [=1, =2] which includes two nodes from two

different routes, namely, :1 and :2, and add to a list called SPL. Then, we calculate the

respective savings of each pair B[=1, =2] using B[=1, =2] = 3>,=1 + 3>,=2 − 3=1,=2 . All the

saving pairs in SPL are sorted in a descending order with respect to the respective saving

values, i.e., B[=1, =2].

Step 2.2: In this step, we attempt to merge the feasible routes in �'( considering the sorted

savings obtained from the previous step. First, we choose the first element from SPL, i.e.,

[=1, =2], and then introduce two new sets, namely '1 and '2, which include all the routes

that visit node =1 and =2, respectively. For each route in A1 ∈ '1, we select route A2 ∈ '2

in order and merge two routes as follows: delete the arcs (>, =1) ∈ '1, (>, =2) ∈ '2 and
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connect nodes (=1, =2) such that the two routes are connected. Once the new route resulted

from merging A1 and A2 is obtained, it’s feasibility concerning the weight capacity of the EVs

is assessed. If the new merged route is infeasible, it is discarded and the next route from

'2 is taken into consideration. Otherwise, the feasibility of the merged route is assessed

concerning the battery driving range of the EVs. If the route is still infeasible, a located

charging station with less insertion cost is inserted between =1 and =2. If both constraints

are met, then the merged route is added to the �'( and A1 and A2 are removed from '1 and

'2, respectively. Then, we proceed with the next route in '1. In case either '1 or '2 are

empty, the merge process for these two nodes terminates. Finally, [=1, =2] is removed from

SPL, and the process is repeated until SPL is empty.

• Step 3 (Improvement and termination phase):

In this step for those routes in �( with more than one charging station, we check that

if removing each of the inserted charging stations, the route remains feasible. If so, the

redundant inserted charging stations are removed from the respective route. Finally, the

objective function value of the network, considering the newly generated routes, is calculated.

1.4.1.3 The Tabu Search (TS) procedure

This algorithm attempts to update the location of the charging stations in such a way that the

efficiency of the routing decisions improves. The overall framework of this algorithm is outlined

as follows:
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• Step 1: Given the solution provided by the radius covering and MCWS algorithms, (0, we

calculate the respective objective function value / ((0) and then initialize the current solution

( ← (0 and the best-known solution (∗ ← (0.

• Step 2: This step aims to use the neighborhood search to relocate the charging stations

efficiently. Let �; denotes the currently located charging stations, and �D = � \ �; indicates

the unlocated charging stations in the current solution (0. Using a one-opt exchange operator,

each located station in 9; ∈ �; is replaced by an unlocated charging station 9D ∈ �* and a set

of neighboring solutions # (() are generated.

• Step 3: For each of the generated neighborhoods (′ ∈ # ((), theMCWS procedure is applied

to generate the corresponding routes.

• Step 4: In this step, by evaluating the objective function value of the routes generated by the

MCWS for neighborhoods, the current solution ( is updated using 0A6<8=(′∈# (() [/ ((
′)],

where (′ are not in the tabu list. However, if the objective function value of a neighborhood

solution is less than the best-known value, the exchange is permitted even it is in the tabu

list. Note that in our implementation, the length of the tabu list is set to 5. If / (() < / ((∗),

set / ((∗) ← / (() and (∗ ← (. Finally, if a given number of iteration has reached, stop the

TS algorithm; otherwise, proceed to Step 2.

1.4.1.4 Framework of TS-MCWS

This section presents the overall framework of the TS-MCWS heuristic to solve model [EV-L].

• Step 1: The initial number of the charging stations, # 9 , is set to one.
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• Step 2: Using the radius covering algorithm, # 9 charging stations are selected. Then, using

the MCWS procedure and considering the selected charging stations, the routing plan, (0,

to satisfy the customer demands, are obtained. By doing so, the current solution ( and the

best-known solution (∗ are set to the initial solution (0.

• Step 3: By applying the TS procedure on (, the current solution is updated. If / (() < / ((∗),

the best-known solution is updated, (∗ ← (.

• Step 4: If a pre-specified number of iterations without improvement in the objective function

value of the best-known solution #8CA has reached or all the charging stations have located,

the TS-MCWS heuristic is terminated. Otherwise, set # 9 ← # 9 + 1 and proceed to Step 2.

In our experiments, if the number of costumers |� | ≤ 75, we set #8CA = 5; otherwise, we set

#8CA = 10.

1.4.2 The SIGALNS heuristic

This sub-section introduces the hybrid heuristic, referred to as SIGALNS heuristic, which is

composed of three components, namely, the modified Sweep heuristic, the Iterated Greedy, and the

Adaptive Large Neighborhood Search algorithm, to solve model [EV-L]. Below, we first discuss

different components of the SIGALNS heuristic and then outlines the overall framework of the

SIGALNS heuristic.

1.4.2.1 Modified Sweep Heuristic

Using the Modified Sweep (MS) heuristic, an initial solution for the SIGALNS algorithm is

constructed. The objective of this algorithm is only to find an initial routing plan; thus, the battery
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driving range limitation and charging station locations are ignored throughout that process. The

sweep algorithm, proposed by Gillet and Miller [26], is used to solve vehicle routing problems,

which consists of two subproblems, namely, the customer clustering and the traveling salesman

problem (TSP). In the clustering subproblem, first, the costumers are sorted in an ascending order

based upon their polar coordinate angles from the depot. Then, starting from the customer with

the smallest angle, the customers are inserted in a single cluster as long as the weight capacity of

the EV is not violated. Otherwise, a new cluster for the rest of the customers is generated and

the process restarts. Once all the customers are assigned to the clusters, the procedure terminates.

Then, in the second subproblem, for each one of the generated clusters, a TSP is solved to generate

the corresponding routing plans. The modified Sweep heuristic is represented in Algorithm 1.

Algorithm 1: Modified Sweep heuristic
Input: The longitude and latitude for customers and depot, the vehicle weight capacity,  4,
customer demand, F8

Rank customers in the ascending order of polar angles with respect to depot
Create a cluster, �; ← , ; ← 1
for 8 ∈ � do

if F8 +
∑
=∈�; F= ≤ :4 then

�; ← �; ∪ {8}
end
else

Start new cluster �;+1 ←
�;+1 ← �;+1 ∪ {8}

end
end
for �; ∈ � do

Solve a TSP on �; to obtain route ';
end
Output: (0 ← ∪ |' |;=1';
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1.4.2.2 Iterative Greedy Heuristic for Charging Station Selection

Once a routing plan is generated, using the iterative greedy (IG) heuristic, a subset of the

candidate charging stations is selected and allocated into different routes with a minimal total

construction and allocation cost. In this section, first, we discuss the allocation cost of charging

stations into the constructed routes. Then, the procedure of the IG to determine the location of the

charging stations and obtaining the feasible routes is described.

• Allocation Cost Analysis: In IG procedure, first, removes all the located charging stations

from the current solution of the model [EV-L] and then relocates the charging stations in

an attempt to find better location solutions. Given the candidate charging station set � and

the solution for the routing phase represented by a set of routes ' = {A1, A2, ..., A |' |}, several

stations with the least cost increment must be inserted to the current routes to improve the

feasibility of the solution. Hence, first, we analyze the allocation cost strategy, which is used

to select and insert a set of charging stations into the current partial routes.

(a) Breaking point: Let A; = {=> = >, =1, =2, ..., , =< = >
′}(A; ∈ ') represents the visited

nodes in the ;Cℎ route of the current solution. In this route, due to the battery driving

range of the EVs, there might be some breaking points in A; . Hence, a node = ∈ A; is

called a breaking point if it satisfies the following condition:

{=|�1
=; < 0, = ∈ A;} (1.37)

This means that the node cannot be reached by the EV since its battery has been

depleted before arriving at node =. The first breaking point in route A; is represented
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by E∗ = {=|�1
=∗,; < 0, �1

=
′
,;
> 0,∀=′ < =∗, =′, =∗ ∈ A;}, which signifies that all the nodes

before E∗ are reachable by EV.

(b) Node feasibility state: In model [EV-L], �1
=;
represents the maximal distance that EV

utilized in A; ∈ ' could traverse after arriving at node = ∈ # . In order to further

evaluate the feasibility status of the route A; and its nodes, we define node feasibility

state, denoted by @=; , as follows:

@=; = <8={=|�1
=; , 0}, = ∈ A; (1.38)

As can be observed, @=; ≤ 0. Using node feasibility state, it could be inferred that once

@=; = 0, the node is reachable in route A; . However, @=; < 0 indicates that the node is

not reachable and the corresponding route is infeasible. Further, node feasibility state

represents the further battery power required to visit node = ∈ A; and also indicates if a

charging station is needed to recharge the battery before arriving = ∈ A; . Additionally,

using the node feasibility states in route A; , we compute the worst node feasibility state

in route A; as @∗; = <8==∈A;\{>}@=; . In each route A; ∈ ', the smaller the @∗
;
is, the worse

the solution feasibility becomes.

(c) Allocation Cost: Once a candidate charging station 9 ∈ � is selected and inserted

at position =̄ after node = in the route A; , the allocation cost 0=̄
9 ;
is used to evaluate

the improvement of the solution feasibility and calculate the objective function value

increment. To minimize the allocation cost of the charging station, eliminating more

breaking points and/or gaining larger improvement in the whole node feasibility state
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is preferred. To be concise, let =̄ be an insertion position for a charging station after

node =, 6=̄
9 ,;

be the respective insertion gain, ℎ=̄
9 ,;

be the respective insertion loss, and

?=̄
9 ,;

be the extra penalty. The allocating and inserting the charging station 9 ∈ � at

node =̄ after node = in the route A; , denoted by 0=̄9 ,; , is defined as follows:

0=̄9 ,; = U1(−6=̄9 ,;) + U2ℎ
=̄
9 ,; + U3?

=̄
9 ,; , 9 ∈ �, = ∈ A; , A; ∈ ' (1.39)

where

U1 + U2 + U3 = 1 U1, U2, U3 ≥ 0

6=̄9 ,; =

( ∑
=∈A;\{>}

(@ ′=; − @=;)
) ( 1 + |@∗

;
|

1 + |@∗′
;
|

)
(1.40)

ℎ=̄9 ,; = 3=8 ,=̄ + 3=̄,=8+1 − 3=8 ,=8+1 , =8, =8+1 ∈ A; (1.41)

?=̄9 ,; = " |@=̄,; | (1.42)

In order to obtain the insertion gain, we utilize equation (2.45). Here, 6=̄
9 ,;

measures

the improvement regarding the solution of A; when station 9 is placed at position =̄ after

node =. As discussed earlier, @=; and @∗; , respectively, represent the node feasibility

state and worst node feasibility state before inserting the charging station 9 in route

A; . In addition, @ ′
=;
and @∗′

;
represent the mentioned values after inserting the charging

station 9 . The first component in the right hand side of equation (2.45) computes the

total improvement with respect to the node feasibility state in route A; . The second

component, if @∗
;
< @∗

′

;
< 0, which indicates the worst node feasibility state has
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improved, becomes greater than one and thus increases the aggregate improvements in

the first component. The insertion loss is calculated via equation (2.46), where =8 and

=8+1, respectively, are the predecessor and successor of node positioned at =̄. Using this

equation, the increment in traveling due to inserting charging station 9 after node = is

calculated, which is then used as an insertion loss in the procedure. The extra penalty,

?=̄
9 ,;
, is calculated via equation (2.47), where " is an user-defined big number which

we set to " = 104 in our experiments. In this equation, @=̄,; represents the feasibility

state of station 9 at position =̄. If @=̄,; < 0, then the charging station 9 at position =̄ is

unreachable and the infeasible insertion is penalized. Let �2
=,;

to represent the maximal

distance that EV at route ; could traverse after leaving node =. For all the nodes in route

A; , we define a reachable charging station set, denoted by � ;= ⊂ �, which is obtained as

� ;= = { 9 ∈ � |�2
=,;
= ˆB>2(2, C) ≥ 3=, 9 }(= ∈ A;). By doing so, for any charging station

in � ;=, if it is located after node = on route A; , the extra penalty ?=̄9 ,; is set to zero, i.e.,

?=̄
9 ,;
← 0.

The allocation cost is the main criterion to select and insert charging stations in

the infeasible routes. Having comprehensively explained this cost, in the next section,

we will describe the overall framework of the IG heuristic.

• The Iterated Greedy (IG) Heuristic: We now introduce the IG heuristic for solving the

charging station location subproblem. This procedure aims to maintain or improve the

feasibility of the routing decisions iteratively. Within this procedure, first, a set of infeasible

routes is identified. Then, the best candidate charging stations and the respective positions of
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insertion, given by the least allocation cost, are determined. These two phases are repeated

until all the routes are feasible. Finally, by applying a local heuristic, the obtained solution

is improved. Algorithm 2 outlines the pseudo-code of this algorithm.

Algorithm 2: The Iterated Greedy (IG) algorithm
Input: Initial solution (0, and the initial cost of building a charging station 50
Initialize the cost of building a charging station 50 and set Θ← 0
Eliminate all the located stations in the (0
( ← (0
while Θ = 0 do

for A; ∈ ' do
Compute the worst feasiblity state @∗

;

if @∗
;
< 0 then
Select and insert the best stations
Update the node feasibility state in A;
Update the station construction cost

end
end
if all routes are feasible then

Θ← 1
end

end
( ← Apply the local sarch procedure
Output: (

Let 50 represents the initial construction cost of the charging stations and Θ signifies if a

solution for model [EV-L] is feasible. The IG algorithm assumes that the initial solution

for model [EV-L] is infeasible (Θ = 0). Let the initial solution consist of vehicle routes,

denoted by ' = {A1, ..., A; , ..., A'}. All the located stations in A; ∈ ' are eliminated and then

the current solution ( is initialized as (0. Then, for each of the routes, the feasibility of the

routes concerning the battery driving range is evaluated and the worst feasibility state @∗
;
is
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determined. If @∗
;
< 0, meaning that the route A; ∈ ' is infeasible, the IG heuristic starts

selecting and locating the charging station.

In this step to select the best possible charging station, first, a segment of nodes Ψ; ∈ A; ,

called the search zone, is introduced as follows: all the predecessor nodes of the first breaking

point until a charging station or depot are added to Ψ; . The Ψ; represents all the possible

positions to insert a charging station. Then, for each of the nodes in Ψ; , = ∈ Ψ; , we find

the reachable charging station set � ;= and then for each of the stations 9 ∈ � ;=, we calculate

the respective allocation cost 0=̄
9 ;
. Afterward, a node by empty reachable charging stations is

discarded from Ψ; . To obtain the best possible position to open the charging station, all the

nodes inΨ; are sorted in ascending order of the summation of the allocation and construction

costs and the position =̄ after node =, indexed by ∗n d1
1 × |Ψ; |, is selected, where n1 is a random

number between 0 and 1, d1 ≥ 1 is a parameter to capture the randomness in the procedure

and equal to 10 in our implementation. Likewise, to determine the best charging station in

� ;= and to insert in chosen position =̄, the stations in � ;= are sorted in ascending order based

on the summation of the allocation and construction costs. From the sorted order, the station

9̄ , indexed by ∗n d2
1 × |�

;
= |, is selected, where n2 is a random number between 0 and 1, and

d2 ≥ 1 is a deterministic parameter which we set to 10 in our implementation. After placing

the station 9̄ at position =̄, the feasibility state of nodes in A; are updated. Because a located

charging station may be used by multiple routes, the construction cost of the inserted stations

is set to zero.

After some iterations, the current solution is updated such that all the respective routes are

feasible, concerning the battery driving range of the EVs. To further improve the solution
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quality, a local heuristic, consisting of two neighborhood search operators, namely, EX-

CHANGE andMOVE, is applied to the current obtained solution. By using the EXCHANGE

operator, a located station in a route is replaced by another located station. Further, by using

the MOVE operator, a located station is replaced by an unlocated station. Each operator is

applied to each of the located stations, and a new location strategy is accepted if it is still

feasible and the objective function value is improved. As mentioned earlier, applying the

IG procedure, all the located stations are first removed from the current solution; hence,

the new location strategy strongly depends on the vehicle routes. On the other hand, the

routing plan, obtained by the adaptive large neighborhood search (ALNS) heuristic which is

discussed in the following section, is also strongly affected by the located stations. Therefore,

the SIGALNS procedure is a cooperative method which exchanging information iteratively

between locating and routing phases with an aim in solving model [EV-L] efficiently.

1.4.2.3 Adaptive Large Neighborhood Search (ALNS) Heuristic for EV Routing

The ALNS algorithm, proposed by Ropke and Pisinger [80], was developed to solve the vehicle

pickup and delivery problems. The ALNS algorithm removes a set of costumes from the current

solution and inserts them into other positions in an attempt to construct a new solution in the large

neighborhood of the prior solution. In each iteration of the algorithm, a set of insertion and removal

operators are selected given their historical success. In the following, we discuss the procedure of

the ALNS algorithm, which is implemented in this study.

• Overall framework: This section describes the overall framework of the ALNS algorithm,

proposed by Laporte et al. [45], which includes large neighborhood, removal and insertion
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operators, adaptive search mechanism, penalized objective function, and acceptance and

termination criteria.

The first component of this algorithm is known as large neighborhood. Within this

component, in each iteration of the algorithm, using the removal operators, =2 number of

costumers are removed from the current solution and are added into a request bank. Then, all

the costumers in the request bank, using an insertion operator, are reinserted into the routes.

We randomly select the =2 customers from the interval [[1×|� |, [2×|� |], where [1, [2 ∈ (0, 1)

and |� | denotes the number of the customers. The second component of the ALNS algorithm

is removal and insertion operators, within which a set of removal operators are proposed and

utilized to remove =2 customers from the current solution. Later, a set of insertion operators

are proposed and used to reinsert all the costumers in the request bank to the best possible

positions in the routes. The next component, known as the adaptive search mechanism,

includes the adaptive selection of the removal-insertion operators and adaptive adjustment

of the operators’ weight. The search process within the ALNS algorithm is divided into a set

of segments, where each segment consists of E (e.g., E = 50) iterations. Within each iteration

of the ALNS algorithm, a roulette-wheel mechanism is utilized to choose the respective

removal and insertion operators. Let W8 9 denotes the weight of operator 8 at segment 9 . The

operator 8 is selected by a probability ?8 9 = W8 9/
∑
ℎ∈� Wℎ 9 , where � denotes the entire list

of either removal or insertion operators and
∑
ℎ∈� Wℎ, 9 represents the total weight of the

respective operators at segment 9 . The initial weight of each operator ℎ ∈ � is set to a

deterministic number (10 in this study). Then, the value of the operator is updated at the end

of each segment as follows: if j8 9 > 0, W8, 9+1 = (1−Γ)W8 9 +ΓZ8 9/j8 9 ; otherwise, W8, 9+1 = W8 9 ,
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where Z8 9 and j8 9 represent the number of times the operator 8 has been selected at segment

9 , and the score of the operator 8 at segment 9 , respectively. Further, Γ, referred to as a

reaction factor, is a deterministic parameter within the range (0, 1), and it’s value is set to

0.3 in this study. Finally, the score j8 9 is set to zero at the beginning of each segment, and

then it’s value is enhanced by Δ8, 9 using the historical performance of the operator 8 at each

iteration of segment 9 . For instance, given a pair of selected removal-insertion operators, if

a new best-known solution is found, the respective score of the operators are increased by

Δ8 9 = 50. If the current solution improves, the respective score of the operators are increased

by Δ8 9 = 20, and if the new solution is not improved but it can be accepted based on the

feasibility conditions, the respective score of the operators is increased by Δ8 9 = 10. Using

the next component, referred to as the penalized objective function, rather than restricting the

search in feasible region, we introduce a penalized objective function if the battery driving

range of the EVs is violated.

/?4=0;8I43 =
∑
9∈�

5 9- 9 +
∑
8∈#

∑
9∈#

∑
4∈�

28 9 438 9.8 9 4 − "
∑
;∈'

∑
=∈A;

@=; (1.43)

where " is a user-defined big number, such as 104, and @=; ≤ 0 is the node feasibility

state, which is discussed earlier. The last element of the ALNS algorithm is acceptance and

termination criteria. To implement this, we follow the Simulated Annealing (SA) criterion,

as introduced by Adulyasak et al. [2]. With this, a new better solution is always accepted.

Moreover, a worse solution is accepted by a probability of 4(/ ((
′)−/ (())/) , where (, (′, and

) represent, respectively, the current solution, new solution, and current temperature of the
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SA. The initial value of the temperature of the SA is set to )0 (10,000 in this study) and it’s

value is updated as )E = Λ)E−1, where Λ is the cooling rate of the SA method and is fixed to

0.995 in our implementation. Finally, the entire process of the ALNS algorithm terminates

when either the maximum number of iteration (�)'�!#() or the time limit () �"� �!#() is

reached. Given that (0, (, (
′, and (∗ represent the initial, current, neighborhood, and the

best-known solution, respectively, the overall framework of the ALNS algorithm is presented

in Algorithm 3.

Algorithm 3: Adaptive Large Neighborhood Search (ALNS) Algorithm
Input: Initial solution (0
( ← (0, (

∗ ← (

8C4A ← 1
while 8C4A < �)'�!#( do

Select a pair of removal and insertion operators
(
′ ← (

Apply the removal operator to (′

Apply the insertion operator to (′

if the acceptance is satisfied then
( ← (

′

end
if / (() < / ((∗) then

(∗ ← (

end
Update the score and weight of each operatore
8C4A ← 8C4A + 1

end
Output:

The best-known solution: (∗

• Removal operators: This section provides detailed information on the removal operators

that have been utilized in this study.
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– Random removal: This operator randomly selects =2 customers from the current solu-

tion and adds them to the request bank.

– Basic worst removal: This operator, first, ranks all the customers based on their

respective removal gains in a descending manner, where the removal gain for customer

= is the difference in the objective function value of the model when the customer

is in the current solution and when it is removed, i.e., (/ (() − /−= (()) [30]. Since

removing a customer from a route only affects the traveling distance of the route and it

does not impact the location decisions, then it can be concluded that / (() − /−= (() :=

3=−1,= + 3=,=+1− 3=−1,=+1, where =−1 and =+1 are the predecessor and successor nodes

of customer =, respectively. Next, the costumer, indexed by ∗n dF3 × |� |, is eliminated

from the respective route and added to the request bank, where n3 is a random number

chosen from interval (0, 1), the dF is a pre-defined constant number, and |� | is the total

number of customers in the current solution.

– Related removal: This operator aims at removing the customers based on their similarity

[83]. First, an initial seed customer = is randomly chosen from the current solution.

Then, the similarity between the other customers =′ and the seed customer = is calculated

as B8<(=, =′) := V13=,=′ + V2 |F=−F=′ | +e=,=′ , where V1 and V2 are weights chosen from

interval (0, 1) and V1 + V2 = 1, 3=,=′ denotes the respective distance between customers

= and =′, and |F= − F=′ | represents the absolute value of the difference in the demand

of customers = and =′. Further, the value of the e=,=′ is fixed to one if two customers

are on the same route; otherwise, e=,=′ = 0. The smaller the value of B8<(=, =′) is, the

more similar customer = and =′ becomes. Next, the customers are sorted based on the
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respective similarity measurement in a descending manner, and the customer, indexed

by ∗n dA4 × |� |, are eliminated from the respective route and added to the request bank,

where n4 is selected between 0 and 1, the dA is a pre-defined constant number, and |� |

is the total number of customers in the current solution.

– Advancedworst removal: As a customer is removed from a route, not only the respective

traveling distance decreases but also the feasibility of the solution concerning the battery

driving range may improve. Hence, this operator, while calculating the removal gain

for costumers, captures the improvement in feasibilty state of nodes as / (()−/−= (() :=

\1(3=−1,8 + 3=,=+1− 3=−1,=+1) + \2(
∑
;∈'

∑
=∈A; @=,; −

∑
;∈'

∑
=∈A; @

′

=,;
), where \1 + \2 = 1,

@=,; , and @
′

=,;
denote the feasibility state of the nodes before and after the removal,

respectively.

– Station-based removal: This operator first randomly chooses one of the charging

stations, which is already located in the current solution. Next, all the customers,

connected to the selected station, are removed from the respective routes until =2

number of customers are removed. For further information and illustrative examples,

the interested readers could refer to [98].

– Single point removal: The partial routes between two charging stations or between a

charging station and the depot or its copy are called the service zone of the charging

stations [98]. The main idea of this operator is to destroy service zone such that the

newly constructed routing plan maintains the feasibility condition as for the battery

driving range. Within this operator, one of the routes, which have at least a located

charging station, is randomly chosen. Afterward, one of the positions in the service
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zone of the respective route is randomly selected. Finally, the customers between the

selected position and either the respective charging station or the depot or its copy are

removed from the selected route.

• Insertion operators: Using a removal operator, a set of customers are removed from the

respective routes in the current solution and are added to the request bank. Then, the

responsibility of the insertion operators, introduced below, is to reinsert all the customers in

the best possible positions in the current solution.

– Basic greedy insertion: This operator aims at inserting the removed customers in the

current request bank ('1) into the current solution in such a way that the insertion leads

to the least objective function value increment at it’s best-inserting position iteratively.

To be concise, letΔ/=,; = /=,;−/=−,; = 3=−1,8+3=,=+1−3=−1,=+1 represents the increment

in the cost after inserting node = in route A; at its best inserting position. The selected

customer =∗ is determined as: =∗ = 0A6<8==∈'1 {<8=A;∈'Δ/=,;}.

– Basic regret-k insertion: The main idea of this operator, proposed by Ropke and

Pisinger [80], is to reinsert the removed customers with the largest regret value in

their respective best insertion position iteratively. For costumer = ∈ '1, let Δ/=, 9

denotes the increment in the objective function value due to inserting it into the

9 Cℎ best route in its best position, where the increment in objective function could be

calculatedwith regard to added distance defined inBasic greedy insertion. For example,

Δ/=,1 indicates the change in the cost after adding cutomer = into the respective best

route. Given Basic regret-k insertion, the selected customer =∗ is determined as:
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=∗ = 0A6<0G=∈'1 {
∑:
9=2(Δ/=, 9 − Δ/=,1)}. In this study, two cases of Basic regret-k

insertion operator, namely, theBasic regret-2 insertion and theBasic regret-3 insertion,

are implemented.

– Advanced greedy insertion: In order to calculate the change in the objective function

value in the Basic greedy insertion, only the the difference due to the traveling distance,

i.e., 3=−1,8 +3=,=+1−3=−1,=+1, is utilized. However, inserting a customer in a route could

affect the feasibility of the current solution due to the battery driving range and weight

capacity limitations. To alleviate this problem, we utilize equation (2.49) to compute

the increment in the objective function value due to the insertion of customer = ∈ '1

in it’s best position at route A; as follows:

Δ/=4F = \3(3=−1,8 + 3=,=+1 − 3=−1,=+1) + \4(
∑
;∈!

∑
=∈A;

@=,; −
∑
;∈!

∑
=∈A;

@
′

=,;)

+<0G
{( ∑

=∈A;
F= − : ;

)
, 0

}
× " (1.44)

where \3+\4 = 1, @=,; and @
′

=,;
are the node feasibility state before and after the insertion.

Using equation (2.49), the Advanced greedy insertion is motivated to construct new

routes such that they satisfy the battery driving range limitation and the vehicle capacity

constraints.

– Advanced regret-k insertion: Similar to the Advanced greedy insertion, the equation

used for calculating the regret values in Basic regret-k insertion is replaced by equation

(2.49), i.e.,Δ/=, 9 = Δ/=4F. Note that in our implementation, two cases of theAdvanced
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regret-k insertion, namely, the Advanced regret-2 insertion and the Advanced regret-3

insertion, are utilized as insertion operators.

1.4.2.4 Algorithmic Framework of the SIGALNS Algorithm

The SIGALNS algorithm consists of three phases: initialization, location, and routing phases.

After the initialization phase, the location and routing phases are implemented successively to

generate the best-known solution for model [EV-L]. A pseudocode of the hybrid algorithm is

presented in Algorithm 4. In the beginning, an initial solution (0, using the modified sweep

algorithm, is generated, which is then provided to the location and routing phases. At this point,

the current solution ( and the best-known solution (∗ are fixed to (0. In the next step, the

weights associated with different operators of the ALNS algorithm are initialized. With this,

the operator weights are recorded globally which could improve the performance of the ALNS

algorithm. Afterward, at the beginning of each iteration of the SIGALNS algorithm, the located

stations are eliminated from the current solution in model [EV-L]. In the following steps, the

location and routing subproblems are solved successively, wherein each iteration, similar to the

ALNS algorithm, the acceptance criterion from the Simulated Annealing (SA) algorithm is used

to accept newly constructed routes as a current solution. Subsequently, the best-known solution to

the problem is updated. Note that, the entire process of the SIGALNS algorithm terminates after

�)'(���!#( iterations or reaching to a maximum time limit.
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Algorithm 4: The framework of SIGALNS algorithm
Input: The distance between all the nodes 3=,=′ , ∀(=, =

′) ∈ # , customers’ demand F8 ,
the wight capacity of EVs :4, ∀4 ∈ � , battery driving range of EVs ˆB>2(2, C), where 2 is charging
time and C is the ambient temperature

Implement modified sweep algorithm to obtain a initial solution (0
( ← (0, (

∗ ← (0
Starting the initial value of the removal and insertion operators for the ALNS algorithm
8C4A ← 1
while 8C4A < �)'(���!#( do

(
′ ← (

Remove all the located charging stations from (
′

Apply the iterated greedy algorithm to (′ to find out the updated located charging stations
Apply the ALNS algorithm to (′ to update the routing plans
if the acceptance criterion is satisfied then

( ← (
′

end
if / (() < / ((∗) then

(∗ ← (

end
8C4A ← 8C4A + 1

end
Output:

The best-known solution: (∗

1.5 Computational Study

In this section, we first describe the data utilized for generating the test instances. Next, the

performance of the proposed heuristics, namely, the SIGALNS and TC-MCWS techniques, in

solving model [EV-L] over GUROBI are discussed. Further, using Fargo, North Dakota (ND), as

a testbed, the performance of the proposed model is discussed. More specifically, the impact of

temperature in the EV location-routing decisions is demonstrated. All numerical experiments are

coded in Python 2.7 on a desktop computer equipped with an Intel Core i7 processor 3.60 GHz

and a 32 GB RAM. The optimization solver used is GUROBI Optimizer 9.0.
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1.5.1 Data description and parameter settings

In this subsection, a concise description of the utilized data and parameters is provided. Our

study considers a fixed depot location, which is positioned at the center of the test region (see Figure

1.2(a)). Using a 200 miles squared distance from the depot location, 150 customer locations are

selected (see Figure 1.2(a)). These customer locations are selected from different neighborhoods in

Fargo, which has a population of more than 4,000. Further, 100 neighborhoods, with a population

size of more than 7,000, are selected as potential charging station locations. Figure 1.2 visualizes

the depot, customer, and potential charging station locations considered in this study. We utilize a

google tool, Distance Matrix API1, to calculate the distance between each origin-destination pairs.

The tool provides travel distance and time, in the form of a matrix, between each origin-destination

pairs. We consider Tesla Model 3 Long Range EV to satisfy customer demands. When fully

charged, this vehicle can travel up to 3<0G = 322 miles and with a maximum weight capacity of

F8 =417 kg2. The weight of the customer demands (F8) are randomly generated using a uniform

distribution between 50 and 100. The unit distance cost is set to be 28 9 4 = 1 [98]. The fixed

installation cost of a single port DCFC is set to be $2,750, which is amortized over 10 years [84].

After running several preliminary experiments, the parameters utilized in the two proposed

heuristics are fixed as follows. The U1, U2, and U2 utilized in allocation cost calculation of the

SIGALNS algorithm are fixed to 0.07, 0.92, 0.01, respectively. The values of [1 and [2, utilized

for generating =2 in the ALNS algorithm, are fixed to 0.1 and 0.3, respectively. The parameters dF

and dA , utilized in the basic worst and related removal operators, are fixed to 10. The V1 and V2

parameters, utilized in the related removal operator, are set to 0.6 and 0.4, respectively. In advanced

1Available from: https://developers.google.com/maps/documentation/distance-matrix/start
2Available from: https://www.tesla.com/model3
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worst removal and insertion operators, the weights are set as: \1 = \3 = 0.9 and \2 = \4 = 0.1.

Finally, the maximum number of iterations of ALNS and SIGALNS algorithms, for instances with

less than 50 customers, are fixed to 40 and 200, respectively. On the hand, for larger instances,

these two values are fixed to �)'�!#( = 50 and �)'(���!#( = 400.

(a) Location of customers and depot (b) Potential location of the charging stations
Figure 1.2

Illustration of the dataset

1.5.2 Computational performance of the proposed algorithms

Based on the parameter setting and algorithmic configuration, the efficiency of the proposed

algorithms in solving model [EV-L] are evaluated on different test instances. To do so, a new set

of problem instances with various sizes, in terms of the number of the customers and the available

EVs, are generated. As discussed earlier, in total 150 locations with a considerable population are

considered as the potential locations of the customers. Next, varying the size of the customers, 10

different test instances are generated. In these instances, the respective customers’ locations are
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randomly chosen out of 150 potential locations, given the corresponding number of the customers

in each instance. Table 1.1 reports the number of variables (continuous and binary) and constraints

for each of the generated test instances of model [EV-L]. In the following, the computational

performance of the proposed algorithms under these generated test instances are discussed.

Table 1.1

Test instances for model [EV-L]

Instance |� | |� | variables Total constraintsBinary Continous Total
S1 5 3 4,026 303 4,329 3,291
S2 10 5 8,640 780 9,420 25,880
S3 15 8 6,866 968 7,834 51,829
S4 20 11 29,202 2,046 31,248 87,258
S5 25 15 47,910 3,015 50,925 143,050
S6 50 22 146,154 6,072 152,226 435,856
S7 75 29 328,948 10,179 339,127 981,262
S8 100 36 622,542 15,336 637,878 1,858,018
S9 125 43 1,053,186 21,543 1,074,729 3,144,874
S10 150 50 1,647,130 28,800 1,675,930 4,920,580

Having introduced the test instances, we first evaluate GUROBI’s performance in solvingmodel

[EV-L] (see Table 1.2). Next, the performance of GUROBI, enhanced with variable fixing and

valid inequalities, in solving model [EV-L], is discussed (see Table 1.3). Note that the performance

of the GUROBI solver in solving model [EV-L], with and without using the variable fixing and

valid inequalities, are tested under three different temperatures: -10>�, 10>�, and 30>�. In

Tables 1.2 and 1.3, ) (B), 60?(%), and �4BC represent the solution time, the obtained gap, and the

best objective function value obtained by GUROBI, respectively. In running the experiments, the

optimality gap and time limit for GUROBI are set to 3% and 14,400 seconds, respectively. Table

1.2 shows that basic GUROBI is able to find feasible solutions for only 1, 2, and 2 test instances,

when the temperature is −10◦�, 10◦�, and 30◦�, respectively. However, the performance of the
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GUROBI solver improves slightly when GUROBI is enhanced with different variable fixing and

valid inequalities. Under such a situation, GUROBI was able to find feasible solutions for 2, 2,

and 3 problem instances under −10◦�, 10◦�, and 30◦� temperatures, respectively (see Table 1.3).

From these results, it can be concluded that enhancing the basic GUROBI via variable fixing and

valid inequalities, the performance of the GURUBI solver increases by 18.4%, 36.3%, 7.9%, when

the temperature is −10◦�, 10◦�, and 30◦�, respectively. Despite these benefits, we must note

that even the enhanced GUROBI cannot serve more than 15 customers, which drastically limits its

practicability from a real-world viewpoint.

Table 1.2

Performance of the GUROBI solver
Temperature = −10◦� Temperature = 10◦� Temperature = 30◦�

instance ) (B) 60? (%) �4BC ) (B) 60? (%) �4BC ) (B) 60? (%) �4BC

s1 14,400 22.4 14,287.1 14,400 24.1 11,175.2 14,400 14.0 6875.5
s2 TL1 - - 14,400 56.1 13,601.3 14,400 49.1 6607.1
s3 TL - - TL - - TL - -
s4 TL - - TL - - TL - -
s5 TL - - TL - - TL - -
s6 TL - - TL - - TL - -
s7 TL - - TL - - TL - -
s8 OM2 - - OM - - OM - -
s9 OM - - OM - - OM - -
s10 OM - - OM - - OM - -

Average 14,400 22.4 14,287.1 14,400 40.1 12,388.2 14,400 31.6 6,741.3
1TL: No feasible solution within time limit
2OM: Out of memory

We now present the computational performances of TS-MCWS and SIGALNS algorithms in

solving the larger instances of model [EV-L] under varying temperatures (see results in Tables

1.4-1.6 for the performance of the algorithms under −10◦�, 10◦�, and 30◦� temperatures). The

first two columns in Tables 1.4-1.6 represent the problem instances and the number of respective

customers. Next, |�; |, �4BC, �E4A064, and ) to represent the number of charging stations opened,

44



www.manaraa.com

Table 1.3

Performance of GUROBI enhanced with variable fixing and valid inequalities
Temperature = −10◦� Temperature = 10◦� Temperature = 30◦�

instance ) (B) 60? (%) �4BC ) (B) 60? (%) �4BC ) (B) 60? (%) �4BC

S1 10,077 2.6 11,378.8 8,025 2.4 8,690.5 3,282 2.9 6,089.5
S2 14,400 9.4 12,377.4 14,400 5.1 6,292.5 14,400 6.7 3,604.5
S3 TL - - TL - - 14,400 61.5 9,262.3
S4 TL - - TL - - TL - -
S5 TL - - TL - - TL - -
S6 TL - - TL - - TL - -
S7 TL - - TL - - TL - -
S8 OM - - OM - - OM - -
S9 OM - - OM - - OM - -
S10 OM - - OM - - OM - -

Average 12,238.5 6 11878.1 11,212.5 3.75 7,491.5 10,695.1 23.7 6,318.8

the best feasible solution, the average feasible solution, and the average running time (in seconds)

of the investigated algorithms, respectively. The last column, 60?(%), in Tables 1.4-1.6 represents

the difference between the best feasible solution found by the two heuristics and is computed as

follows: (�4BC2 − �4BC1)/�4BC1. It is worth mentioning that we run each test instance five times to

obtain the average solution and running time reported in Tables 1.4-1.6.

Table 1.4 presents the computational performance of the SIGALNS and TS-MCWS algorithms

under −10◦� temperature. It can be observed that besides instances S5 and S6 (25 and 50

customers), the SIGALNS algorithm is capable of providing high-quality feasible solutions in

all the other instances (8 out of 10 instances). The exception could be attributed due to the

special distribution of the customers, which influences the ALNS performance [80]. Besides,

such quality solutions in the SIGALNS algorithm can be obtained in 2.7 times faster than the

TS-MCWS algorithm. Finally, we observe that at least one fewer charging stations are required to

be constructed in three instances of the SIGALNS algorithm, namely, instances S4, S7, and S9,

over the TS-MCWS algorithm.
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Table 1.4

Performance of SIGALNS and TS-MCWS when temperature is −10◦�
SIGALNS TS-MCWS

instance |� | |�; | �4BC1 �E4A0641 ) 1(B) |�; | �4BC2 �E4A0642 ) 2(B) 60? (%)
S1 5 4 11,083.2 11,083.2 2.1 4 11,168.5 11,168.5 1.6 0.8
S2 10 4 11,214.7 11,264.7 1.9 4 11,243.9 11,243.9 2.2 0.3
S3 15 3 8,861.9 8,861.9 2.8 3 8,889.3 8,889.3 2.2 0.3
S4 20 6 17,119.2 17,119.2 3.5 7 19,684.6 19,745.7 3.5 14.9
S5 25 6 17,255.6 17,257.8 4.0 6 17,231.2 17,269.7 3.5 -0.2
S6 50 13 37,689.3 37,713.5 15.2 13 37,368.1 37,557.6 48.1 -0.9
S7 75 14 41,347.2 41,513.4 22.6 15 43,918.1 44,119.8 33.5 6.2
S8 100 16 48,505.7 48,750.0 86.7 16 48,778.3 48,903.9 141.2 0.6
S9 125 22 66,866.2 67,182.0 140.1 24 72,211.7 72,420.0 312.0 7.9
S10 150 22 67,794.6 67,862.9 220.2 22 68,584.9 69,034.7 779.4 1.2

Average 57.5 11 32,773.6 32,860.8 49.9 11.4 33,907.9 34,035.3 132.7 3.1

To demonstrate the computation superiority of the SIGALNS algorithm over the TS-MCWS

algorithm, we further experiment with temperatures 10◦� and 30◦�, as shown in Tables 1.5

and 1.6. To summarize, we observe that when the temperature is 10◦� (Table 1.5), 8 out of

10 problem instances SIGALNS algorithm provides a high-quality feasible solution over the TS-

MCWS algorithm. This improvement in solution quality in the SIGALNS algorithm is achieved in

2.7 times faster than the TS-MCWS algorithm. Further, when the temperature is 30◦� (Table 1.6),

9 out of 10 problem instances SIGALNS algorithm provides a high-quality feasible solution over the

TS-MCWS algorithm. This improvement in solution quality in the SIGALNS algorithm is achieved

in 2.4 times faster than the TS-MCWS algorithm. Overall, the SIGALNS algorithm consistently

provides high-quality feasible solutions in a reasonable timeframe within our experimental ranges.

1.5.3 Sensitivity Analysis

This subsection performs a set of sensitivity analysis to evaluate the performance of the

proposed model and to draw managerial insights for the respective policy-makers. To perform

these experiments, three instances, namely, (6 (50 customers), (8 (100 customers), and (10 (150
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Table 1.5

Performance of SIGALNS and TS-MCWS when temperature is 10◦�
SIGALNS TS-MCWS

instance |� | |�; | �4BC1 �E4A0641 ) 1(B) |�; | �4BC2 �E4A0642 ) 2(B) 60? (%)
S1 5 3 8,482.9 8,523.3 0.4 3 8,513.3 8,513.3 0.3 0.4
S2 10 2 5,971.6 5,990.6 1.6 2 5,985.3 5, 985.3 1.7 0.3
S3 15 3 8,841.7 8,882.5 4.1 3 8,838.8 8,838.8 2.9 -0.1
S4 20 3 9,130.6 9,152.1 4.2 4 9,178.3 9,240.1 4.4 0.6
S5 25 3 9,352.9 9,384.7 3.9 4 9,331.0 9,370.8 3.1 -0.3
S6 50 7 21,652.5 21,711.8 13.4 8 24,353.7 24,442.9 42.1 12.4
S7 75 5 17,831.2 17,983.5 28.9 6 20,462.1 20,544.6 45.1 14.7
S8 100 9 30,136.4 30,159.4 68.1 9 30,577.0 30,827.7 113.7 1.5
S9 125 6 24,524.4 24,563.7 134.4 6 24,738.0 25,006.1 298.1 0.9
S10 150 9 32,742.3 32,904.1 179.6 10 35,534.5 35,737.9 657.5 8.5

Average 57.5 5 16,866.6 16,925.5 43.9 5.5 17,751.2 17,850.7 116.9 3.8

Table 1.6

Performance of SIGALNS and TS-MCWS when temperature is 30◦�
SIGALNS TS-MCWS

instance |� | |�; | �4BC1 �E4A0641 ) 1(B) |�; | �4BC2 �E4A0642 ) 2(B) 60? (%)
S1 5 2 5,913.7 5,913.7 0.4 2 5,921.0 5,921.0 0.3 0.2
S2 10 1 3,363.0 3,363.0 1.4 1 3,411.3 3,411.3 1.6 1.4
S3 15 1 3,566.6 3,566.9 5.0 1 3,585.6 3,585.6 4.0 0.6
S4 20 1 3,875.9 3,875.9 5.4 2 3,902.1 3,924.9 5.3 0.7
S5 25 2 6,681.4 6,693.2 6.6 2 6,661.4 6,702.1 5.5 -0.3
S6 50 1 5,859.5 5,859.5 11.1 1 5,386.9 5,967.3 36.1 0.5
S7 75 2 10,788.2 10,934.0 29.3 3 12,443.2 12,507.5 44.3 15.3
S8 100 3 13,948.9 14,056.5 71.2 3 14,261.6 14,519.8 111.9 2.2
S9 125 2 12,739.0 12,970.6 64.8 3 14,349.6 15,531.1 152.1 12.6
S10 150 2 13,822.1 13,853.2 84.5 2 14,183.0 14,296.9 308.7 2.6

Average 57.5 1.7 8,055.8 8,108.6 28 1.8 8,460.6 8,636.7 67 3.5
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customers), are used as representative instances. In all the experiments, we study the impact of

ambient temperature and charging time variation on the overall system performance. The key

lessons learned from the experiments are summarized below.

• From Figure 1.3, it can be observed that the EVDCFC charging station location decisions are

sensitive to the ambient temperature and charging time. For instance, when the charging time

of the EVs is set to its base value (80 minutes) and the ambient temperature decreases from

10◦� (base ambient temperature) to−10◦�, the selection of the charging stations increases by

approximately 100%, 110%, and 141% for 50, 100, and 150 customers, respectively. Figure

1.4 visualizes the EV DCFC charging station location decisions under different ambient

temperatures (only for 150 customers). Likewise, if the ambient temperature remains fixed,

but the charging time decreases, then more EV charging stations are getting selected. For

instance, when the ambient temperature is set to its base value (10◦�) and the charging time of

EVs drops from 80 minutes (base value) to 40 minutes, the selection of the charging stations

increases by approximately 71.4%, 90%, and 100% for 50, 100, 150 customers, respectively.

The results clearly indicate that the EV DCFC charging station location decisions are highly

sensitive to the ambient temperature and charging time.

• Figure 1.5 indicates the impact of variation in the ambient temperature on the overall system

cost, where the box of the boxplot indicates the first quartile, median, and third quartile

borders, and the whiskers show the highest and lowest values found. As can be seen from

the figure, increasing the ambient temperature, the median value of the overall system cost

decreases. For instance, when the ambient temperature increases from −10◦� to 10◦�,
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(a) 50 customers (b) 100 customers

(c) 150 customers
Figure 1.3

Impact of temperature and charging time on EV DCFC charging station selection
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(a) −10◦� (b) 0◦� (c) 10◦�

(d) 20◦� (e) 30◦�
Figure 1.4

Illustration of charging station location decisions under different ambient temperatures

the overall system cost drops by approximately 27.2%, 19.7%, and 23.1% for 50, 100, 150

number of customers, respectively. This is quite intuitive, given fewer EV DCFC charging

stations would be necessary at the higher temperatures (see Figure 1.3).

• Figure 1.5 shows the impact of ambient temperature and initial state of charge of EVs (B>20)

on the DCFC charging station selection decisions. To run the experiments, we vary the

ambient temperature between −10◦� and 30◦� and B>20 between 100 and 250 miles while

keeping the recharging time fixed at 80 minutes (base value). The results in Figure 1.5 clearly

indicates that the EV DCFC charging station location decisions are highly sensitive to both

the ambient temperature and B>20. For instance, assuming that the ambient temperature is

10◦� and the B>20 decreases from 200miles to 100 miles, the number of EVDCFC charging
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(a) 50 customers (b) 100 customers (c) 150 customers
Figure 1.5

Impact of ambient temperature on overall system cost

station location decisions increases by approximately 60%, 100%, and 133.1% for 50, 100,

150 customers, respectively. In summary, it can be concluded that both the initial state of

the charging and the ambient temperature are of high importance in properly modeling and

planning the EV DCFC location routing problems.

• Figure 1.7 visualized how the EV routing decisions are impacted with and without consid-

ering the ambient temperature. For demonstration purposes, we use the instance with 20

customers (instance (4) and set the recharging time and B>20 to their base values, namely,

80 minutes and 150 miles. From Figure 1.7, we observe a noticeable change in the location-

routing decisions when the ambient temperature is considered. In both cases, 5 EVs are

utilized to satisfy the customer’s demand. However, an additional 5 charging stations need

to be installed, and 81 more miles need to be traveled by the EVs to satisfy the customer’s

demand when the ambient temperature is considered.
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(a) 50 customers (b) 100 customers

(c) 150 customers
Figure 1.6

Impact of ambient temperature and B>20 on EV DCFC charging station selection

(a) Without temperature (b) Temperature = −10◦�
Figure 1.7

Illustration of routing decisions with and without considering the ambient temperature
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CHAPTER II

TWO-STAGE STOCHASTIC ELECTRIC VEHICLES FAST CHARGER LOCATION

ROUTING PROBLEM UNDER AMBIENT TEMPERATURE

2.1 Introduction

According to the 2019world energy outlook report [69], energy systems’ future estimation indicates

that severe environmental damages will occur by 2040 if no policies are adopted worldwide to

reduce the fossil fuel consumption rate. This forthcoming failure in fossil energy accessibility and

the pollution produced by unnatural sources drive several efforts to avoid the loss by overcoming

the pollution resulting from fossil fuel consumption. Cost drops in renewable energy sources and

advances in digital technologies, while eliminating some energy security problems, offer incredible

energy transition opportunities. As such, shifting towards more sustainable transportation, electric

vehicles (EVs) are becoming more popular in urban transport and logistics systems. In 2030,

EV owners will continue to grow to around 18.7 million in the USA and 126 million worldwide

[62]. As more EVs take to the road, the appropriate deployment of publicly accessible charging

stations becomes an important issue to resolve. However, the problem of optimally locating the

EV charging stations is not trivial due to the simultaneous consideration of many factors such as

uncertainty in charging time, range anxiety, frequency of charging, state of charge (SOC), and

finally, varieties of charging needs by different users (e.g., visitors, employee,residential, the fleet

users) [14].
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Recent EVs rely on lithium-ion and lithium-polymer battery packs as the primary power source

[64], which can only offer a minimal driving range per charge. Low ambient temperature can

significantly reduce the charging rate, thereby prolonging the charging time [99]. Due to the

need for continuous heating in most cold areas, EV battery packs frequently get stressed, which

significantly degrading the battery charging performance over time. Even though an individual or

a combination of the aforementioned factors are taken into account by a number of past studies,

none of the prior studies examined the impact of weather variability (e.g., hot or cold weather

conditions) in designing the EV DC Fast Charging (DCFC) stations [96, 94]. Idaho National

Laboratory (INL) recently found that the SOC of a 30-minute DCFC charger could drop by 36%

from warm temperature (25◦�) to low temperature (0◦�), indicating the sensitivity of EVs routing

performance in cold areas [104]. The sensitivity of Lithium-ion and Lithium-polymer battery

performance to the ambient temperatures is also supported by a number of recent studies, such as

[17, 33, 32, 52].

Over the past few decades, many studies have investigated the vehicle routing problem under

a stochastic environment [44, 37, 49]. However, investigating the impact of uncertainty in EV-

specific attributes, such as battery depletion, SOC level, and other related parameters, are not

extensively investigated in the literature. As such, several studies in EV logistic planning pointed

out the importance of addressing such issues in future studies [38, 68]. Due to the challenges

associated with solving stochastic optimization problems, most of the past studies related to

the location-routing problems (LRPs) on EVs ignore the input parameters’ uncertainty. To the

best of the author’s knowledge, apart from [105], other studies related to the EV LRPs do not

consider the effect of uncertain input parameters on the location-routing decisions. With all these
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taken into account, planning the EVs transportation network that could appropriately consider the

ambient weather and related uncertain parameters (e.g., demand uncertainty), especially in specific

geographic areas that suffer from fluctuating temperatures around the year or during the day, is

imperative.

To fill the gap in the literature, this study proposes developing an innovative two-stage stochastic

mixed-integer linear programmingmodel, which optimizes the EVDCFCcharging station locations

and the associated routing decisions under stochastic customer demand and ambient temperature

fluctuations. The proposed mathematical model is an extension of the classical location-routing

problems, which are already known to be an NP-hard problem [46]. To deal with this problem’s

computational burden, we developed a hybrid algorithm that first utilizes the Progressive Hedging

algorithm to decompose the original problem by scenarios. Subsequently, an innovative heuristic,

namely, the Sweep-based Iterated Greedy Adaptive Large Neighborhood algorithm, is developed

to solve the scenario-specific subroblems in a reasonable timeframe. The performance of the

proposed algorithm is compared with the state-of-the-art solvers, such as GUROBI. Finally, by

designing a real-life case study using Fargo city in North Dakota, we aim to evaluate the proposed

model’s performance and to draw a number of managerial insights for the decision-makers to a

region with high ambient temperature fluctuations.

The exposition of this paper is as follows. Section 2.2 details the related literature review. Sec-

tions 2.3 and 2.4 introduce the proposed mathematical model formulation and solution approaches.

Finally, section 2.5 presents the numerical experiments under different settings to assess the per-

formance of our proposed methodologies. This study is providing a number of future research

directions present in Chapter 3.
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2.2 Literature Review

To assess the impact of ambient temperature and other stochastic parameters (e.g., customer

demand), this study integrates the facility location decisions (e.g., charging stations) and the

associated EV routing decisions via solving a vehicle routing problem. As such, in this section,

we first review the related location-routing studies.

The LRP is a hybrid problem that integrates the location-allocation problem and vehicle routing

problem, and its objective is to solve the two problems concurrently to achieve a better solution

compared to the case where problems are solved independently [16]. In literature, different variants

of the LRP, such as single vs. multiple depots (e.g., [48, 93]), capacities on depots or vehicles

(e.g., [54, 51]), and the time window restriction for the deliveries (e.g., [100, 101]) have been

investigated. A comprehensive review of the LRP can be found in [67] and [72]. Laporte and

Nobert [46] developed an exact solution method to address the LRP under smaller instances which

only included 20-50 customers. Belenguer et al. [8] proposed an exact solution method based

upon the branch-and-cut algorithm to address the capacitated LRP. Their method was able to tackle

problems with 5-10 potential depots and 20-88 customers. Due to the challenges associated with

solving LRP using exact solution methods, various heuristic solution techniques (e.g., simulated

annealing, tabu search, particle swarm optimization) were developed to tackle the LRP (e.g.,

[56, 91, 53, 23]). Lately, several studies have incorporated energy and environmental factors in the

LRPs. Ebrahimi [19] developed a multi-objective optimization model for a tire distribution system

that minimizes the effects of environmental emission andmaximizes the total costs of the integrated

network’s responsiveness. Yang and Sun [98] proposed a mixed-integer linear programmingmodel

to address the battery swap station location-routing problem. The authors then provided an extended
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formulation that enables EVs to revisit a specific battery swap station more than once. Later, Hof

et al. [31] developed a mixed-integer linear programming model to address the EV battery swap

station location-routing problem, which accounted the possibility of intermediate stops. Schiffer

andWalther [81] proposed an LRP formulation for EV logistics, which considers the time windows

and enables the EVs to be partially charged after visiting the charging stations. Li et al.[50] utilize

a bi-level programming approach to generate public recharging infrastructure location strategy in

which the location strategy is optimized in the upper-level model and the corresponding routing

plan in the lower-level model. Finally, Zhang et al. [105] developed a mixed-integer linear

programming model to address the EV battery swap station LRP with stochastic demands. This

study develops a hybrid variable neighborhood search algorithm to solve the location and routing

problems interactively. In summary, although many studies related to the LRP and LRP with

EVs are carried out, the majority of them assumed that the model input parameters are known in

advance, which may limit their applications under stochastic environment.

As discussed earlier, the generalization of the LRP requires solving a vehicle routing problem

(VRP), which is already known to be a challenging problem from a solution standpoint [12]. Over

the years, many variants of theVRP are developed, such as capacitatedVRP (CVRP), customer time

windows (VRPTW), multiple depots (MDVRP), pickup and delivery (VRPPD), time-dependent

travel time (TD-VRP), and heterogeneous fleet (MFVRP) [90]. All these different variants of

the VRP could be investigated under both deterministic and stochastic settings under the LRP.

The literature related to stochastic Vehicle Routing Problems (SVRPs) aims to find the routing

decisions where some parameters of the problem, such as customers’ demands (e.g., [10, 28]), the

number of customers (e.g., [9, 25]), travel times (e.g., [44, 29]), etc., are not known in advance.
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Besides, a number of EV-specific factors are also required to be considered to obtain a robust EV

logistic network, such as uncertain waiting times at the public recharging stations (e.g., [39, 86, 1]),

uncertainty in battery depletion (e.g., [85]), and many others.

It shall be noted that even though the past studies have done a phenomenal job in addressing

different EV-specific challenges, the studies ignored the effect of climate variability on the DCFC

siting selection and the associated EV routing decisions (e.g., [15, 102, 76, 74, 78, 35]). Motoaki

et al. [65] presented findings claiming that ambient temperature might heavily affect the DCFC

charging rate. The authors stressed that considering the ambient temperature in designing the EV

DCFC infrastructure in large countries like the US, where the regional climate varies significantly,

could not be neglected. Unfortunately, most of the past studies (e.g., [15, 102, 76, 74, 78, 35])

assumed a constant charging rate in their formulations; hence, the obtained EV logistical solutions

might be inaccurate. As such, this study fills the gap in the literature by extending the traditional

LRPs to account for the impact of ambient temperature on the DCFC infrastructure deployment

and the associated EV routing decisions.

2.3 Mathematical Model Formulation

The effect of variation in ambient temperature on the battery’s charging process is a major concern

for planning the delivery routes of the EVs. As shown in [65], the SOC of a fast charger does

not drop linearly. Indeed, the actual fast charging process is non-linear, which is a function

of initial SOC, charging time, and the ambient temperature. As such, the simplified linearized

SOC assumption may provide an overestimated duration for the DCFC’s, and the resulting model

may overestimate the EV fast charger location-routing decisions. In the following development,
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the inclusion of temperature effects in the proposed EV location-routing mathematical model is

explained.

Let us define ˆB>2(2, C) to predict the SOC of an EV, which is a function of charging time C

and ambient temperature 2 (in >Celsius). We further define _0, _1, and _2 to be the coefficient

estimates, and B>28 the initial value of the SOC of an EV. Inspired from the study of [65], the

following SOC estimation is provided.

ˆB>2(2, C) =
(
B>28 +

_0 + _12

_2

)
4_2C −

(
_0 + _12

_2

)

After simplification, the above equation becomes:

ˆB>2(2, C) = 4_2CB>28 +
(
_0 + _12

_2

)
(4_2C − 1)

The ambient temperature is constant for all vehicles while they are in the charging process.

We now replace the 4_2C and
(
_0+_12
_2

)
(4_2C − 1) terms by `1 and `2, respectively, and obtain the

following equation.

ˆB>2(2, C) = `1B>28 + `2 (2.1)

Note that Figure 2.1 visualizes `1and `2 that equation (2.1) utilizes to estimate the level of

SOC in this study.

Having introduced the underlying equation to estimate the SOC, it is observed that the value

of two new defined parameters, `1 and `2, depends on the value of _0, _1, and _2, which are

estimated using statistical approaches and historical data for a specific type of EV [65]. To
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(a) `1 visualization (b) `2 visualization
Figure 2.1

Illustration of the parameters used for SOC estimation

capture the variability in the data and reflect a sound SOC estimation, the value of these two

terms is modeled as an uncertain parameter in this study. Moreover, we assume the stochasticity

of customer demands at individual customer locations. Given the EV facility location decisions

need to be made now prior to realizing the uncertainty, we formulated this problem as a two-stage

stochastic mixed-integer linear programming (MILP) model and referred to as [EV-SAT]. The

summary of the sets, parameters, and decision variables used in the proposed mathematical model

[EV-SAT] are listed below.

Sets:

• I: set of customers, 8 ∈ I

• J : set of potential charging station locations, 9 ∈ J

• E: set of electrical vehicles, 4 ∈ E

• {>, >′}: A single depot and it’s duplicate dummy

• N : set of all nodes, = ∈ N , where N = I ∪ J ∪ {>, >′}
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• Ω: set of all possible scenarios of ambient temperature l ∈ Ω

Parameters:

• B 9 : cost of installing a new charging station at location 9 ∈ J

• 38 9 : distance between node 8 ∈ N and 9 ∈ N

• 28 9 4: shipping cost per unit of distance from node 8 ∈ N to 9 ∈ N using EV 4 ∈ E under

scenario l ∈ Ω

• W8l: demand weight for costumer 8 ∈ I under scenario l ∈ Ω

• X4: maximum weight capacity of EV 4 ∈ E

• B>20: initial state of charge (SOC, in %) of an EV at depot

• \: a conversion factor to calculate the maximum distance an EV can travel at its current SOC

• ": a big number

• 3<0G: the maximum driving distance at a 100% SOC, where 3<0G ≥ \ ˆB>2(2, C)

• `1
l, `2

l: stochastic parameters used for SOC estimation under sceanario l ∈ Ω

• dl: the probability of occurrence of a scenario l ∈ Ω and
∑
l∈Ω dl = 1

Decision Variables:

• - 9 : 1 if a charging station is located in 9 ∈ J ; 0 otherwise

• +8 9 4l: 1 if the road connecting node 8 ∈ N to 9 ∈ N is traversed by EV 4 ∈ E under scenario

l ∈ Ω; 0 otherwise

• %8 9 4l: remaining weight capacity of EV 4 ∈ E after delivery fulfillment at node 9 ∈ N as

soon as it arrives at node 8 ∈ N under scenario l ∈ Ω

• �1
=4l: the maximum distance an EV 4 ∈ E can travel as it arrives at node = ∈ N under

scenario l ∈ Ω
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• �2
=4l: the maximum distance an EV 4 ∈ E can travel as it leaves at node = ∈ N under

scenario l ∈ Ω

As defined earlier, �1
=4l denotes the maximum distance an EV can travel under the current SOC

level when arrives node = ∈ N in the underlying logistic network. We now use the conversion rate

(\) to find the initial SOC (B>28) of an EV 4 ∈ E at a charging station 9 ∈ J under scenario l ∈ Ω

as follows:

B>28 × \ = �1
9 4l −→ B>28 =

�1
9 4l

\
(2.2)

Substituting (2.2) into (2.1), given that `1
l and `2

l represent the scenario-specific value of

the parameters needed for SOC estimation, we obtain the following equation to estimate the the

scenario-specific SOC:

ˆB>2l (2, C) = `1
l

(
�1
9 4l

\

)
+ `2

l (2.3)

To calculate the maximum distance an EV 4 ∈ E can travel as it leaves a charging station 9 ∈ J

under scenario l ∈ Ω, we define the following constraints:

�2
9 4l = \ ˆB>2l (2, C)- 9 ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω

→ �2
9 4l = \

(
`1
l

�1
9 4l

\
+ `2

l

)
- 9 ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω

→ �2
9 4l = `1

l�
1
9 4l- 9 + `2

l\- 9 ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.4)
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Constraints (2.4) are nonlinear. To linearize, we first introduce a new variable {/ 9 4l |∀ 9 ∈

J , 4 ∈ E, l ∈ Ω} to substitute the �1
9 4l
- 9 term. Since we know that 3<0G is an upper bound for

the �1
9 4l

variable, the following set of linear constraints are introduced to substitute constraints

(2.4):

�2
9 4l = `1

l/ 9 4l + `2
l\- 9 ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.5)

/ 9 4l ≤ 3<0G- 9 ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.6)

/ 9 4l ≤ �1
9 4l ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.7)

/ 9 4l ≥ �1
9 4l − 3<0G

(
1 − - 9

)
∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.8)

/ 9 4l ≥ 0 ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.9)

With this, we are now ready to introduce our proposedmathematicalmodel [EV-SAT], as shown

below. In [EV-SAT], charging station location decision {- 9 }∀ 9∈J is considered as a first-stage

decision variable. Following this decision, a number of second-stage routing-related decisions are

made (e.g., +8 9 4l, %8 9 4l, �1
=4l, and �2

=4l) after the uncertainty is revealed. The objective function

(2.25) of the model [EV-SAT] minimizes the first-stage EV charging station location cost and the

expected second-stage routing-related costs across all possible uncertain realizations.

[EV-SAT] "8=8<8I4
∑
9∈J

B 9- 9 +
∑
l∈Ω

dl

∑
8∈N

∑
9∈N

∑
4∈E

28 9 438 9+8 9 4l (2.10)

subject to constraints (2.5)-(2.9) and
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∑
=∈N∉{>′}

∑
4∈E

+=84l = 1 ∀8 ∈ I, l ∈ Ω (2.11)

∑
=∈N∉{>′},=≠ 9

∑
4∈E

+= 94l ≤ "- 9 ∀ 9 ∈ J , l ∈ Ω (2.12)

∑
=
′∈N∉{>},=′≠=

+==′4l −
∑

=
′∈N∉{>′},=′≠=

+=′=4l = 0 ∀= ∈ N ∉

{
>, >

′
}
, 4 ∈ E,

l ∈ Ω (2.13)

∑
=∈N∉{>}

+>=4l −
∑

=∈N∉{>′}
+=>4l = 0 ∀4 ∈ E, l ∈ Ω (2.14)

∑
=∈N∉{>}

+>=4l ≤ 1 ∀4 ∈ E, l ∈ Ω (2.15)

∑
=∈N∉{>′ , 9}

%= 94l =
∑

=∈N∉{>, 9}
% 9=4l ∀ 9 ∈ J ,∀4 ∈ E,

l ∈ Ω (2.16)

∑
=∈N∉{>,8}

%8=4l ≤
∑

=∈N∉{>′ ,8}
%=84l − W8l

∑
=∈N∉{>′ ,8}

+=84l

+X4 (1 −
∑

=∈N∉{>′ ,8}
+=84l) ∀8 ∈ I, 4 ∈ E, l ∈ Ω (2.17)

%==′4l ≤ X4+==′4l ∀= ∈ N ∉

{
>
′
}
, =
′ ∈ N ∉ {>} ,

= ≠ =
′
, 4 ∈ E, l ∈ Ω (2.18)
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�1
=
′
4l
+ 3==′+==′4l ≤ �2

=4l + 3<0G (1 −+==′4l) ∀= ∈ N ∉

{
>
′
}
,

=
′ ∈ N ∉ {>} , =′ ≠ =, 4 ∈ E, l ∈ Ω (2.19)

�1
=
′
4l
+ 3==′+==′4l ≥ �2

=4l − 3<0G (1 −+==′4l) ∀= ∈ N ∉

{
>
′
}
,

=
′ ∈ N ∉ {>} , =′ ≠ =, 4 ∈ E, l ∈ Ω (2.20)

�2
>4l = \B>20 ∀4 ∈ E, l ∈ Ω (2.21)

�1
84l = �2

84l ∀8 ∈ I, 4 ∈ E, l ∈ Ω (2.22)

%8 9 4l, �
1
=4l, �

2
=4l ≥ 0 ∀(8, 9) ∈ N , = ∈ N , 4 ∈ E, l ∈ Ω (2.23)

+8 9 4l ∈ {0, 1} ∀8 ∈ N , 9 ∈ N , 4 ∈ E, l ∈ Ω (2.24)

- 9 ∈ {0, 1} ∀ 9 ∈ J (2.25)

Constraints (2.11) ensure that each customer location 8 ∈ I is served by atleast one EV. Constraints

(2.12) limit the number of EVs that can visit a charging station 9 ∈ J . Constraints (2.13) and

(2.14) ensure flow balance of EVs within the logistic network. Constraints (2.15) ensure that each

EV 4 ∈ E can leave the depot at most once. Constraints (2.16) enforce that no deliveries are

made when an EV stops at a charging station. Constraints (2.17) update the weight capacity of

an EV as it leaves a customer node 8 ∈ I. Constraints (2.18) limit the weight capacities of the

EVs. Constraints (2.19) and (2.20) update the battery level of an EV after each node is visited.

Constraints (2.21) initiate the SOC of an EV 4 ∈ E as it leaves the depot. Constraints (2.22) keep
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the battery level unchanged as an EV fulfills a delivery at a customer node. Finally, constraints

(2.23), (2.24), and (2.25) are the nonnegativity and binary restrictions for the decision variables.

2.3.1 Variable Fixing and Valid Inequalities

To improve the computational performance of the proposed mathematical model [EV-SAT], the

following variable fixing and valid inequalities are introduced. We begin by introducing the variable

fixing techniques first.

• The electric vehicle 4 ∈ E is not able to traverse the arc between the nodes = ∈ N and =′ ∈ N

if the respective traveling distance, i.e., 3==′ is greater than the maximum distance that it can

travel by a fully charged battery, namely, 3<0G .

+==′4l = 0 ∀= ∈ N , =′ ∈ N , 4 ∈ E, l ∈ Ω|3==′ > 3<0G (2.26)

• The electric vehicle 4 ∈ E is not able to traverse the arc between the nodes = ∈ # and =′ ∈ #

if the sum of the demand of costumers in respective customer nodes exceeds the weight

capacity of the EV.

+==′4l = 0 ∀= ∈ N , =′ ∈ N , 4 ∈ E, l ∈ Ω| (W=l + W=′l) > X4 (2.27)

In addition to the above-mentioned variable fixing techniques, the following valid inequalities

are introduced.
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• In our study, we assume that none of the EVs can travel more than 3CA8? each day. To

capture this constraint, we add the following valid inequalities as a lazy constraint to model

[EV-SAT].

∑
=∈N

∑
=
′∈N

3==′+==′4l ≤ 3CA8? ∀4 ∈ E, l ∈ Ω (2.28)

• In this technique, we approximate a lower bound, namely, # C>C0;
!�,l

, to determine the number

of EVs that are required to satisfy the customer demand under each scenario l ∈ Ω. We

believe generation of this lower bound will further tighten the solution space for model

[EV-SAT]. To estimate # C>C0;
!�,l

, the following two factors need to be considered: (8) the

total weight associated with the requests of the costumers in each scenario l ∈ Ω and (88)

the maximum trip distance that each EV 4 ∈ E can traverse. First, we need to estimate the

minimum number of EVs that are required under each scenario l ∈ Ω based on the freight

limitation, # 5 A486ℎC

!�,l
, which can be obtained by solving a well-known bin packing problem

[57] given by (2.29)-(2.33). Within this formulation, we define the following two decision

variables: {/4l |∀4 ∈ E, l ∈ Ω} denotes if EV 4 ∈ E is used under scenario l ∈ Ω or not

and {�84l |∀8 ∈ I, 4 ∈ E, l ∈ Ω} denotes if costumer 8 ∈ I is served by EV 4 ∈ E under

scenario l ∈ Ω. Under each scenario l ∈ Ω, we then solve the following optimization

model.

"8=8<8I4 #
5 A486ℎC

!�,l
=

∑
4∈E

/4l (2.29)

subject to
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∑
8∈I

W8l�84l ≤ X4/4l ∀4 ∈ E, l ∈ Ω (2.30)∑
4∈E

W8l�84l = 1 ∀8 ∈ I, l ∈ Ω (2.31)

/4l ∈ {0, 1} ∀4 ∈ E, l ∈ Ω (2.32)

�84l ∈ {0, 1} ∀8 ∈ I, 4 ∈ E, l ∈ Ω (2.33)

The next lower bound is computed based on the maximum length of the trip, # CA8?
!�

, that an

EV 4 ∈ E can traverse. To do so, we create a minimal spanning tree based on the feasible

arcs contained by the depot and the customer nodes, i.e., I ∪ {>}. The total weight of this

graph, where the weight is the traveling distance between vertices of the graph, provides us

with an estimated minimum overall traveling distance 34BC . Hence, the second lower bound

is computed as follow:

#
CA8?

!�
= ∗ 34BC

3CA8?
(2.34)

Having introduced these two lower bounds on the minimum number of EVs required under

each scenario l ∈ Ω, we use the best among them in the MILP settings, as shown below:

# C>C0;!�,l = <0G{# 5 A486ℎC

!�,l
, #

CA8?

!�
} (2.35)
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Finally, to tighten the solution space of model [EV-SAT], we add the following valid

inequality as a lazy constraint.

∑
4∈E

∑
=
′∈N

+>=′4l ≥ # C>C0;!�,l ∀l ∈ Ω (2.36)

2.4 Solution Methodology

Model [EV-SAT] is an extension of the classical location-routing problems (LRP) [46]. Note

that if the EVs’ driving range is set to be a sufficiently large number, then recharging the battery

and constructing the charging stations will be unnecessary in this logistic network. With such an

assumption, model [EV-SAT] can be reduced to the classic vehicle routing problem (VRP) with

stochastic demands [24], which is already known as an NP-hard problem. Therefore, it could

be inferred that model [EV-SAT] is also an NP-hard problem. As such, despite the additions of

the variable fixing and valid inequalities introduced in Section 2.3.1, our initial experimentation

with the GUROBI solver exposes its inability to solve the larger instances of model [EV-SAT] in

a reasonable timeframe. To alleviate this challenge, we propose to develop a customized hybrid

solution approach, which combines Progressive Hedging Algorithm (PHA) and a Sweep-based

Iterated Greedy Adaptive Large Neighborhood search algorithm (SIGALNS) to efficiently solve

model [EV-SAT] in a reasonable timeframe. The following subsections detail the proposed hybrid

algorithm.

2.4.1 Progressive Hedging Algorithm

Model [EV-SAT] is a two-stage stochastic mixed-integer linear programming model. Evaluating

such a model with a large scenario set, Ω, poses a serious computational challenge. To alleviate
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this challenge, we apply the PHA procedure, proposed by Rockafellar and Wets [79], to efficiently

solve model [EV-SAT]. This algorithm adopts an augmented Lagrangian relaxation method to

decompose the two-stage stochastic programming model by individual scenarios. As a result, the

subproblems corresponding to the scenarios could be solved in a much shorter time [92]. The PHA

algorithm has shown a good capability in solving a broad range of problems, including applications

in financial planning [66], surgery planning [27], inland waterway port management [5, 4, 3], and

many others. As can be seen in the model [EV-SAT], constraints (2.5), (2.6), and (2.12) connect the

first-stage decision variables, {- 9 } 9∈J , with the second-stage decision variables. The connection

between the decision variables of the two stages restricts model [EV-SAT] to be decomposed by

scenarios. To overcome this issue, we introduce a new copy variable {- 9l} 9∈J ,l∈Ω ∈ {0, 1}, which

allows model [EV-SAT] to be separable by scenarios. Having introduced this new variable, we

reformulate [EV-SAT] as follows:

"8=8<8I4
∑
l∈Ω

dl

( ∑
9∈J

B 9- 9l +
∑
8∈N

∑
9∈N

∑
4∈E

28 9 438 9+8 9 4l

)
(2.37)

subject to (2.6)-(2.9), (2.11), (2.13)-(2.24), and
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�2
9 4l = `1

l/ 9 4l + `2
l\- 9l ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.38)

/ 9 4l ≤ 3<0G- 9l ∀ 9 ∈ J , 4 ∈ E, l ∈ Ω (2.39)∑
=∈N∉{>′},=≠ 9

∑
4∈E

+= 94l ≤ "- 9l ∀ 9 ∈ J , l ∈ Ω (2.40)

- 9l = - 9l′ ∀ 9 ∈ J , (l, l′) ∈ Ω, l ≠ l′

(2.41)

- 9l ∈ {0, 1} ∀ 9 ∈ J , l ∈ Ω (2.42)

Constrraints (2.41), known as nonanticipativity constraints, compel the scenario-dependent first-

stage variables to take the same values for different scenarios. However, such constraints in

the model still hinder the problem from being separable by scenarios. As such, we introduce

{-̄ 9 } 9∈J ∈ {0, 1}, referred to as overall design vectors, and replace constraint (2.41) with the

following set of constraints:

- 9l = -̄ 9 ∀ 9 ∈ J , l ∈ Ω (2.43)

-̄ 9 ∈ {0, 1} ∀ 9 ∈ J (2.44)
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With the introduction of constraints (2.43) and (2.44), problem (2.37) can now be decomposed by

scenarios. We adopt the augmented Lagrangian strategy, proposed by Rockafellar et al. [79], to

obtain the following objective function:

"8=8<8I4
∑
l∈Ω

dl

( ∑
9∈J

B 9- 9l +
∑
8∈N

∑
9∈N

∑
4∈E

28 9 438 9+8 9 4l +∑
9∈J

(
Z 9l (- 9l − -̄ 9 ) +

1
2
^(- 9l − -̄ 9 )2

))
(2.45)

where {Z 9l}∀ 9∈J ,l∈Ω and ^ are known as Lagrangian multiplier and penalty ratio, respectively.

In (2.45), since both {- 9l} 9∈J ,l∈Ω ∈ {0, 1} and {-̄ 9 } 9∈J ∈ {0, 1} are binary, we can reduce the

quadratic term
∑
9∈J ^(- 9l − -̄ 9 )2 as follows:

∑
9∈J

^(- 9l − -̄ 9 )2 =
∑
9∈J

(
^(- 9l)2 − 2^- 9l -̄ 9 + ^( -̄ 9 )2

)
≈

∑
9∈J

(
^- 9l − 2^- 9l -̄ 9 + ^-̄ 9

)

With this simplification, the objective function (2.45) can be re-written as follow:

"8=8<8I4
∑
l∈Ω

dl

( ∑
9∈J
(B 9 + Z 9l +

^

2
− ^-̄ 9 )- 9l +∑

8∈N

∑
9∈N

∑
4∈E

28 9 438 9+8 9 4l +
∑
9∈J
(1
2
^-̄ 9 − Z 9l -̄ 9 )

)
(2.46)

Note that when the value of {-̄ 9 } 9∈J is fixed, the last term in (2.46) becomes a constant and can

be eliminated from (2.46). With this, (2.46) can be reduced to the following.

[EV-SAT(PHA)]"8=8<8I4
∑
l∈Ω

dl

( ∑
9∈J

B̂ 9l- 9l +
∑
8∈N

∑
9∈N

∑
4∈�

28 9 438 9+8 9 4l

)
(2.47)
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subject to (2.6)-(2.9), (2.11), (2.13)-(2.24), (2.38)-(2.40), and (2.42). where B̂ 9l = (B 9 + Z 9l +

^
2 − ^-̄ 9 ) is the revised installation cost for installing the charging station at location 9 ∈ � under

scenario l ∈ Ω.

Let Z A
9l

and ^A , respectively, denote the value of the lagrangian multipliers and the penalty

parameters at iteration A of the PHA. In each iteration of the PHA, |Ω| deterministic subproblems

[EV-SAT(PHA)] are solved, and the consensus value for the overall design vectors, {-̄ 9 } 9∈J , is

calculated. The algorithm continues to find a better solution until some pre-specified conditions

are satisfied (shown below). Otherwise, we update the values of {Z A
9l
} and ^A using the following

equations:

Z A9l ←− Z A−1
9l + ^A−1(-A9l − -̄A−1

9 ) ∀ 9 ∈ J , l ∈ Ω (2.48)

^A ←− Δ?^A−1 (2.49)

where Δ? > 1 is a given constant and the values of the parameters {Z A=0
9l
}∀ 9∈J ,l∈Ω and ^A=0 are

initially set to zero and a positive number, respectively. Finally, the following criteria are followed

to terminate the PHA implementation.

Termination criteria: The PH algorithm terminates upon satisfying one of the following condi-

tions:

•
∑
l∈Ω dl

( ∑
9∈J

(
|-A
9l
−-̄A

9
|

|J |

))
≤ n ; where n is a pre-specified tolerance gap

• 10 consecutive non-improvement iterations

• Maximum iteration limit is reached (e.g., 8C4A<0G = 50)
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• Maximum time limit is reached (e.g., C<0G = 36, 000 CPU seconds)

2.4.2 The SIGALNS Heuristic

Having decomposed the original problem [EV-SAT] by scenarios, the size of corresponding

subproblems decreases considerably. However, the subproblem [EV-SAT(PHA)] is still a variant

of the classical location-routing problems (LRP) [46] that is already known as anNP-hard problem.

The preliminary experiments reveal that solving subproblems [EVSAT(PHA)] using GUROBI is

computationally challenging. To overcome this challenge, we introduce a hybrid heuristic, referred

to as SIGALNS heuristic, which is composed of three components, namely, the modified Sweep

heuristic, the Iterated Greedy, and the Adaptive Large Neighborhood Search algorithm. Below, we

first discuss different SIGALNS heuristic components and then outline the overall framework of

the SIGALNS heuristic. Note that the subproblems of [EV-SAT] can be viewed as a deterministic

mixed-integer linear programming model, which are solved for each scenario l ∈ Ω. Therefore,

to reduce the notation burden, the following subsection omits l for any newly introduced sets and

parameters.

2.4.2.1 Modified Sweep Heuristic

We first develop a Modified Sweep (MS) heuristic to construct an initial solution for the SIGALNS

algorithm. Given this algorithm’s purpose is to find an initial routing plan, the battery driving

range limitation and charging station locations are ignored in this process. We initially utilize the

sweep algorithm, proposed by Gillet and Miller [26], to solve a vehicle routing problem (VRP).

The solution of the VRP consists of two phases, namely, the customer clustering and solving a

traveling salesman problem (TSP). In the first phase, the customers are sorted in an ascending

order based upon their polar coordinate angles from the depot. By obeying the weight capacity

74



www.manaraa.com

of the EVs, starting from the customer with the smallest angle, the customers are inserted in a

single cluster. If violated, a new cluster is created for the remaining customers, and the process

continues. The procedure terminates when all the customers are assigned in different clusters.

For the second phase, a TSP is solved to generate the corresponding routing plans for each of the

generated clusters. A pseudo-code of the modified Sweep heuristic is outlined in Algorithm 1.

Algorithm 1: Modified Sweep heuristic
Input: The longitude and latitude for customers and depot, the vehicle weight capacity, X4,
customer demand, W8l

Rank customers in the ascending order of polar angles with respect to depot
Create a cluster, �; ← , ; ← 1
for 8 ∈ � do

if W8l +
∑
=∈�; W=l ≤ X4 then

�; ← �; ∪ {8}
else

Start new cluster �;+1 ←
�;+1 ← �;+1 ∪ {8}

end
end
for �; ∈ � do

Solve a TSP on �; to obtain route ';
end
Output: &0 ← ∪ |' |;=1';

2.4.2.2 Iterative Greedy Heuristic for Charging Station Selection

Once the modified sweep heuristic generates an initial routing plan, the iterative greedy (IG)

heuristic is utilized to allocate a set of charging stations in different routes from the candidate

sites. In this section, first, we discuss the allocation cost of the charging stations, followed by the

implementation of the IG heuristic to obtain a feasible route.

• Allocation Cost Analysis: In the IG procedure, first, we remove all the located charging

stations from the current solution and then reallocate them in an attempt to find a better
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solution. Let R = {A1, A2, ..., A |' |} be the routes obtained in the current solution. Charging

stations with the least cost increment now needs to be inserted in the current routes to ensure

the feasibility of the model. To serve this purpose, below, we provide a set of cost allocation

strategies, which is used to select and insert a set of charging stations into the current partial

routes.

(a) Breaking point: Let A; = {=> = >, =1, =2, ..., , =< = >
′}(A; ∈ R) be the list of visited

nodes in the ;Cℎ route of the current solution. We also define = ∈ A; to be the breaking

point if it satisfies the following condition:

{=|�1
=;l < 0, = ∈ A;} (2.50)

This implies that those nodes are unreachable by an EV 4 ∈ E due to battery capacity

limitations. The first breaking point in route A; , represented by E∗ = {=|�1
=∗;l <

0, �1
=
′
;l
> 0,∀=′ < =∗, (=′, =∗) ∈ A;}, signifies that all the nodes before E∗ are reachable

by EV 4 ∈ E.

(b) Node feasibility state: In model [EV-L], we introduce �1
=;l

to be the maximal distance

that EV 4 ∈ E could traverse after reaching node = ∈ N along the A; ∈ R route. In

order to further evaluate the feasibility status of the route A; and its associated nodes,

we define node feasibility state, denoted by F=; , as follows:

F=; = <8={�1
=;l, 0}, = ∈ A; (2.51)
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From (2.51), it could be observed that F=; ≤ 0. When F=; < 0, it indicates that the

node is not reachable and the corresponding route is infeasible. On the other hand,

when F=; = 0, it could be inferred that the node is reachable in route A; . To summarize,

node feasibility state represents the additional battery power required to visit node

= ∈ A; and the necessity to allocate a charging station for recharging the batteries before

arriving = ∈ A; . Additionally, using the node feasibility states in route A; , we compute

the worst node feasibility state in route A; as F∗; = <8==∈A;\{>}F=; . In each route A; ∈ ',

the smaller the F∗
;
is, the worse the solution feasibility becomes.

(c) Allocation Cost: Once a candidate charging station 9 ∈ J is selected and inserted at

position =̄ after node = in route A; , the allocation cost 5 =̄9 ; is used to evaluate the feasibility

and improvement of the objective function value. Tominimize the allocation cost of the

charging station, eliminating more breaking points and/or gaining larger improvement

among the whole node feasibility state is preferred. Let us now define =̄ to be an

insertion position for a charging station after node =, 6=̄
9 ,;

be the respective insertion

gain, ℎ=̄
9 ,;

be the respective insertion loss, and 1=̄
9 ,;

be the extra penalty. The insertion

of a charging station 9 ∈ J at node =̄ after node = in route A; , denoted by 5 =̄9 ,; , is defined

as follows:

5 =̄9 ,; = Φ1(−6=̄9 ,;) +Φ2ℎ
=̄
9 ,; +Φ31

=̄
9 ,; , 9 ∈ �, = ∈ A; , A; ∈ ' (2.52)
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where

Φ1 +Φ2 +Φ3 = 1 Φ1,Φ2,Φ3 ≥ 0

6=̄9 ,; =

( ∑
=∈A;\{>}

(F ′=; − F=;)
) ( 1 + |F∗

;
|

1 + |F∗′
;
|

)
(2.53)

ℎ=̄9 ,; = 3=8 ,=̄ + 3=̄,=8+1 − 3=8 ,=8+1 , =8, =8+1 ∈ A; (2.54)

1=̄9 ,; = " |F=̄; | (2.55)

where, 6=̄
9 ,;

measures the improvement regarding the solution of A; when station 9 is

placed at position =̄ after node =, and F=; and F∗; , respectively, represent the node

feasibility state and worst node feasibility state before inserting the charging station 9

in route A; . To obtain the insertion gain, we utilize equation (2.53), where the right hand

side of the equation computes the total improvement with respect to the node feasibility

state in route A; . To obtain the insertion loss, we utilize equation (2.54), where =8

and =8+1, respectively, denote the predecessor and successor of node positioned at =̄.

Finally, the extra penalty, 1=̄
9 ,;
, is calculated via equation (2.55), where " is a user-

defined large number which we set to " = 104 in our experiments. When F=̄; < 0, the

charging station 9 ∈ J at position =̄ is deemed to be unreachable and is penalized via

the infeasible insertion operator. Let us now define the a reachable charging station set,

J ;
= ⊂ J , which is obtained as J ;

= = { 9 ∈ J |�2
=;l
≥ 3= 9 };∀= ∈ A; . For any charging

station in J ;
= , if it is located after node = on route A; , the extra penalty 1=̄9 ,; is set to zero,

i.e., 1=̄
9 ,;
← 0.
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• The Iterated Greedy (IG) Heuristic: This subsection introduces the IG heuristic, aiming to

locate charging stations and maintain or improve feasibility in the routing decisions. First, a

set of infeasible routes is identified. When by utilizing the least-cost allocation strategy, the

best candidate charging stations with their respective positions are inserted. This process

continues until all the routes become feasible. To the end, a local search heuristic is utilized

to improve the current solution. Algorithm 2 outlines the pseudo-code of this algorithm.

Algorithm 2: The Iterated Greedy (IG) algorithm
Input: Initial solution &0, and the initial cost of building a charging station B0 = {B̂ 9l}
Initialize the cost of building a charging station 50 and set Θ← 0
Eliminate all the located stations in the &0
& ← &0
while Θ = 0 do

for A; ∈ ' do
Compute the worst feasibility state F∗

;

if @∗
;
< 0 then
Select and insert the best stations
Update the node feasibility state in A;
Update the station construction cost

end
end
if all routes are feasible then

Θ← 1
end

end
( ← Apply the local search procedure
Output: &

LetΘ to denote the feasibility of the current solution, B0 = {B̂ 9l} to be the initial construction

cost of the charging stations, andR = {A1, ..., A; , ..., A'} to be the set of vehicle routes obtained

in the initial solution. The IG algorithm assumes that the initial solution for model [EV-

SAT(PHA)] is infeasible, i.e., Θ = 0. At this point, all the currently located stations in
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A; ∈ R are eliminated and the current solution & is initialized to &0. Then, for each of the

routes, the feasibility of the routes are evaluated based on the fact that they are not violated

the battery driving range and the worst feasibility state F∗
;
is determined. If a route A; ∈ R is

infeasible, i.e., F∗
;
< 0, the IG heuristic starts by selecting and locating the charging stations.

To select the best possible charging station locations, a segment of nodes Π; ∈ A; , referred to

as search zone, is introduced, where all the predecessor nodes of the first breaking point until

a charging station or depot are added toΠ; . At this point, for each of the nodes in = ∈ Π; , the

reachable charging station set J ;
= is determined, and the corresponding allocation cost 5 =̄

9 ;
is

calculated for each station 9 ∈ J ;
= . Note that nodes with empty reachable charging stations

are discarded from Π; . To obtain the best possible position to open the charging station,

all the nodes in Π; are sorted in ascending order based on the allocation ( 5 =̄
9 ;
) and revised

construction costs (B̂ 9l) and position, indexed by ∗n d1
1 × |Π; |, after node = is selected, where

0 ≤ n1 ≤ 1 is a random number and d1 ≥ 1 is a parameter to capture the randomness in the

procedure (e.g., set to 10 in our implementation). Likewise, to position the best charging

station location in J ;
= , first set J ;

= is sorted in ascending order based on the allocation

and construction costs, and position, indexed by ∗n d2
1 × |�

;
= |, after node = is selected, where

0 ≤ n2 ≤ 1 is a random number and d2 ≥ 1 is a parameter to capture the randomness in the

procedure (e.g., set to 10 in our implementation). Following the placement of the stations 9̄

at position =̄, the feasibility state of nodes in A; are updated.

The iterations continue and the current solution is updated till all the respective routes

become feasible (i.e., conforming the battery driving range of the EVs). At this point, a local

heuristic is employed in an attempt to improve the solution quality of the current solution.
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The local heuristic utilizes two neighborhood search operators, namely, the EXCHANGE

and theMOVE operators. By utilizing the EXCHANGE operator, an opened charging station

is replaced by another opened charging station. On the other hand, by utilizing the MOVE

operator, an opened charging station is replaced by an unopened charging station. The

procedure continues till a new feasible location with an improved objective function is

found. As discussed earlier, the IG procedure first removes all the opened charging stations.

Therefore, the selection of the new charging stations is strongly contingent upon the obtained

vehicle routes. Further, the routes, obtained by the adaptive large neighborhood search

(ALNS) heuristic (discussed in Section 2.4.2.3), is strongly affected by the opened charging

station locations. With this, the proposed SIGALNS procedure exchanges information

iteratively between the locating and routing phases in an attempt to improve the solution

quality.

2.4.2.3 Adaptive Large Neighborhood Search (ALNS) Heuristic for EV Routing

The ALNS algorithm, proposed by Ropke and Pisinger [80], utilizes a set of insertion and removal

operators by observing their historical successes to construct a new solution in the large neighbor-

hood in an attempt to improve the solution quality. Below, we outline the steps involved in the

ALNS algorithm.

• Overall framework: The overall framework of theALNS algorithm consists of severalmajor

steps: creation of the large neighborhood, developing problem-specific removal and insertion

operators, utilizing the adaptive search mechanism, penalizing the objective function, and

obeying the acceptance and termination criteria [45].
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In each iteration of the ALNS algorithm, first, =A number of costumers are removed

from the current solution (using a removal operator) and are added to a request bank. The =A

customers are selected randomly from the interval [o1× |I|, o2× |I|], where o1, o2 ∈ (0, 1)

and |I | denotes the number of the customers. Theses removed customers are then reinserted

into the routes by using an insertion operator. Note that a set of removal and insertion

operators are defined at priory to perform the removal and insertion operations. An adaptive

search mechanism is utilized that adaptively select the removal-insertion operators and adjust

the operators’ weight. The search process of the ALNS algorithm is divided into a set of

segments, where each segment consists of E (e.g., E = 50) number of iterations. Within

each iteration of the ALNS algorithm, a roulette-wheel mechanism is utilized to choose

the respective removal and insertion operators. Let [8 9 denotes the weight of operator 8 at

segment 9 , which is selected with a probability of ?8 9 = [8 9/
∑
ℎ∈H [ℎ 9 , where H denotes

the list of either removal or insertion operators and
∑
ℎ∈H [ℎ, 9 represents the total weight of

the respective operators at segment 9 . The initial weights of the operators ℎ ∈ H are set to

a small number (e.g., 10), which is then updated at the end of each segment as follows: if

i8 9 > 0, [8, 9+1 = (1 − j)[8 9 + jg8 9/i8 9 ; otherwise, [8, 9+1 = [8 9 , where 0 ≤ j ≤ 1, referred

to as a reaction factor, is a deterministic parameter (e.g., 0.3 in our implementation), and

i8 9 and g8 9 represent the number of times the operator 8 has been selected at segment 9 , and

the score of the operator 8 at segment 9 , respectively. Finally, the score g8 9 , initialized with

zero, is enhanced by Δ8 9 using the historical performance of the operator 8 at each iteration

of segment 9 . For instance, Δ8 9 could be increased by 50, 20, and 10, if a new best-known

solution is found, the current solution improves, and the new solution is not improved but it
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can be accepted based on the feasibility conditions, respectively. Finally, using a penalized

objective function, the objective function is penalized if the battery driving range of the EVs

is violated.

$?4=0;8I43 =
∑
9∈�

B̂ 9l- 9l +
∑
8∈#

∑
9∈#

∑
4∈�

28 9 438 9+8 9 4l − "
∑
;∈'

∑
=∈A;

F=; (2.56)

where " is a user-defined big number (e.g., 104) and F=; ≤ 0 is the node feasibility

state (introduced earlier). To define the acceptance and termination criteria of the ALNS

algorithm, we follow the Simulated Annealing (SA) criterion as introduced by Adulyasak et

al. [2]. Though a new better solution will always be accepted, a worse solution could also be

accepted with a probability of 4($ (&
′)−$ (&))/) , where &, & ′, and ) represent, respectively,

the current solution, new solution, and current temperature of the SA. The temperature is first

initialized (e.g., 10,000 in our study) and then updated as follows: )E = Λ)E−1, where Λ is

the cooling rate of the SA method, which is set to 0.995 in our implementation. The overall

ALNS algorithm terminates if one of the following criterion is satisfied: (8) maximum

iteration limit (�)'�!#() or (88) the maximum time limit () �"� �!#() is reached. Let &0,

&, & ′, and &∗ to represent the initial, current, neighborhood, and the best-known solution,

respectively. The outline of the overall ALNS algorithm is presented in Algorithm 3.

• Removal operators: We now discuss the removal operators that are utilized in this study.

– Random removal: This operator randomly selects =A customers from the current solu-

tion and adds them to the request bank.
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Algorithm 3: Adaptive Large Neighborhood Search (ALNS) Algorithm
Input: Initial solution &0
& ← &0, &

∗ ← &0
8C4A ← 1
while 8C4A < �)'�!#( do

Select a pair of removal and insertion operators
&
′ ← &

Apply the removal operator to &′

Apply the insertion operator to &′

if the acceptance is satisfied then
& ← &

′

end
if $ (&) < $ (&∗) then

&∗ ← &

end
Update the score and weight of each operatore
8C4A ← 8C4A + 1

end
Output:

The best-known solution: &∗

– Basic worst removal: To utilize this operator, first, we calculate the removal gain for

each customer =, which can be obtained by finding the difference in the objective

function value between the presence and absence of that respective customer, i.e.,

($ (&)−$−= (&)) [30]. Since removal of the customer only affects the routing decisions

(not the location decisions), the removal gain can be calculated as follows: $ (&) −

$−= (&) := 3=−1,= + 3=,=+1 − 3=−1,=+1, where = − 1 and = + 1 are the predecessor and

successor nodes of customer =, respectively. Next, the customers are sorted based

on the removal gain in descending order, and the customer indexed by ∗n dF3 × |I|, is

eliminated from the respective route and added to the request bank, where, 0 ≤ n3 ≤ 1

is a random number, dF is a pre-defined constant number, and |I | defines the total

number of the customers in the current solution.
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– Related removal: This operator, proposed by Shaw [83], removes the customers based

on their similarity. First, an initial seed customer = is randomly chosen from the current

solution. Then, the similarity between the seed customer = with other customers =′ is

calculated as follows: <(=, =′) := Z13=,=′ + Z2 |W=l − W=′l | + e=,=′ , where Z1 and Z2 are

weights chosen from interval (0, 1) and Z1 + Z2 = 1, and the term |W=l − W=′l | denotes

the difference in customer demands (absolute) between customer = and =′. Finally, the

last term of the equation, e=,=′ , is set to 1 if the two customers are on the same route;

0 otherwise. As can be seen, the smaller the value of <(=, =′) is, the more similar

customer = and =′ becomes. We can now sort the customers in a descending order,

and the customers, indexed by ∗n dA4 × |I|, are eliminated from the respective route and

added to the request bank, where 0 ≤ n4 ≤ 1 is a random number, dA is a pre-defined

constant number, and |I | denotes the total number of customers in the current solution.

– Advanced worst removal: If a customer is removed from a route, it may result re-

ducing the traveling distance and improving the feasibility of the solution. Thus, this

operator calculates the removal gain for costumers, while simultaneously improves the

feasibility state of the nodes as $ (&) − $−= (&) := U1(3=−1,= + 3=,=+1 − 3=−1,=+1) +

U2(
∑
;∈'

∑
=∈A; F=,; −

∑
;∈'

∑
=∈A; F

′

=,;
), where U1 + U2 = 1, and F=,; and F

′

=,;
, respec-

tively, denote feasibility state of the nodes before and after the removal. Followingly,

the customers are sorted based on the removal gain in descending order, and the cus-

tomer indexed by ∗n dF3 × |I|, is eliminated from the respective route and added to the

request bank.
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– Station-based removal: This operator first randomly chooses one of the opened charg-

ing station (as can be obtained from the current solution). Next, all the customers,

connected to the selected station, are removed from the respective routes until =2 num-

ber of customers are removed. Readers are encouraged to review [98] for understanding

the details about this operator.

– Single point removal: Before introducing this operator, let us first define the concept

of service zone of a charging station. Essentially, the partial routes between two nodes

(e.g., charging stations, charging station and depot or the copy of the depot) are called

the service zone of a charging station [98]. The main idea of this operator is to destroy

the service zone of a node while maintaining feasibility of the newly constructed

routing paths. The first step of this operator is randomly select a route, where at least

one charging station is located. Afterward, one of the positions in the service zone of

the respective route is randomly selected. Finally, the customers between the selected

position and the respective charging station (or depot or the copy of the depot) are

removed from the selected route.

• Insertion operators: Byutilizing the removal operators, a set of customers could be removed

from the existing solution of the current routes and added to the request bank. Then, a number

of insertion operators, as discussed below, are utilized to reinsert all the customers in an

attempt to improve the current solution.

– Basic greedy insertion: This operator aims at inserting the removed customers from

the request bank ('1) into the current solution in such a way that the insertion leads
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to the least objective function value increment. Let Δ$=,; = $=,; − $=−,; = 3=−1,= +

3=,=+1 − 3=−1,=+1 to denote the increment in the cost after inserting node = in route A;

at its best inserting position. The inserted customer =∗ can be determined as follows:

=∗ = 0A6<8==∈'1 {<8=A;∈'Δ$=,;}.

– Basic regret-k insertion: This operator reinsert the removed customers based on the

largest regret values among the inserted positions [80]. For costumer = ∈ R1, let Δ$=, 9

be the increment in the objective function value due to inserting = into 9 Cℎ best route

in its best position. Note that the increment in the objective function value could be

calculated using the Basic greedy insertion operator. Using this operator, customer =∗

could be selected as follows: =∗ = 0A6<0G=∈R1 {
∑:
9=2(Δ$=, 9 − Δ$=,1)}, where Δ$=,1

denote the change in the cost after adding customer = into the best respective route.

In our study, two cases of Basic regret-k insertion operator, namely, the Basic regret-2

insertion and the Basic regret-3 insertion, are implemented.

– Advanced greedy insertion: Note that the Basic greedy insertion only utilized the

difference due to the traveling distance, i.e., 3=−1,= + 3=,=+1 − 3=−1,=+1, to calculate the

change in the objective function value. However, due to the limitations on battery

driving range and weight capacity, the insertion of a customer in a given route could

affect the feasibility of the current solution. As such, equation (2.57) is utilized
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to compute the increment in the objective function value due to inserting customer

= ∈ R1 in it’s best position at route A; , as shown below.

Δ$=4F = U3(3=−1,= + 3=,=+1 − 3=−1,=+1) + U4(
∑
;∈!

∑
=∈A;

F=,; −
∑
;∈!

∑
=∈A;

F
′

=,;)

+<0G
{( ∑

=∈A;
W=l − X;

)
, 0

}
× " (2.57)

where, U3 + U4 = 1, and F=,; and F
′

=,;
, respectively, denote the node feasibility states

before and after the insertion. Using (2.57), this operator constructs new routes such

that they satisfy the battery driving range limitation and the vehicle capacity constraints.

– Advanced regret-k insertion: The Basic regret-k insertion also utilizes the same equa-

tion (2.49), as used by the Advanced regret-k insertion operator, by replacing Δ$=4F

term with Δ$=, 9 , i.e., Δ$=, 9 = Δ$
=4F, to calculate the regret values for this operator.

Note that the two variants of the Advanced regret-k insertion, namely, the Advanced

regret-2 insertion and the Advanced regret-3 insertion, are utilized as insertion opera-

tors in this study.

2.4.2.4 Algorithmic Framework of the hybrid Algorithm

In this section, first, we describe the algorithmic framework of the SIGALNS algorithm that is used

to solve subproblem [EV-SAT(PHA)], and then we outline the overall framework of the proposed

hybrid decomposition algorithm to solve model [EV-SAT].

The SIGALNS algorithm consists of three phases: initialization, location, and routing phases.

Once the initialization phase is completed, the location and routing phases are implemented

successively to generate the best-known solution for the model [EV-SAT(PHA)]. A pseudocode of
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the SIGALNS algorithm is presented in Algorithm 4. The algorithm starts by generating an initial

solution, &0, using the modified sweep algorithm. This initial solution is passed to the location

and routing phases and the current solution, &, and the best-known solution, &∗, are fixed to &0

and the weights of the ALNS operators are initialized. At the beginning of each iteration of the

SIGALNS algorithm, the opened charging station locations are eliminated from the current solution

and then the location and routing subproblems are solved successively within the ALNS algorithm.

Recall that the ALNS algorithm selects the newly constructed routes using the acceptance criterion

provided by the Simulated Annealing (SA) algorithm. The entire SIGALNS algorithm procedure

is continued until one of the two termination criterion are satisfied: (8) reaching the maximum

iteration limit (�)'(���!#() or (88) reaching the maximum time limit.

Algorithm 4: The Framework of SIGALNS algorithm
Input: The distance between all the nodes 3==′ , ∀(=, =

′) ∈ # , customers’ demand W8l ,
the wight capacity of EVs X4, ∀4 ∈ � , battery driving range of EVs ˆB>2l (2, C)\, where 2 is
charging time and C is the ambient temperature

Implement modified sweep algorithm to obtain a initial solution &0
& ← &0, &

∗ ← &0
Starting the initial value of the removal and insertion operators for the ALNS algorithm
8C4A ← 1
while 8C4A < �)'(���!#( do

&
′ ← &

Remove all the located charging stations from &
′

Apply the iterated greedy algorithm to &′ to find out the updated located charging stations
Apply the ALNS algorithm to &′ to update the routing plans
if the acceptance criterion is satisfied then

& ← &
′

end
if $ (&) < $ (&∗) then

&∗ ← &

end
8C4A ← 8C4A + 1

end
Output:

The best-known solution for scenario l: &∗l
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Algorithm 5 outlines the pseudo-code of the proposed hybrid algorithm.

Algorithm 5: Hybrid Algorithm
Input: A ← 1, n , {ZA

9l
} 9∈J,l8=Ω ← 0, ^A ← ^0, terminate← false

while terminate = false do
for l = 1 to |Ω| do

Solve the respective [EV-SAT(PHA)] using the SIGALNS algorithm (Algorithm 4) and
obtain {-A

9l
} 9∈J

Calculate the consensus parameter: -̄A
9
← ∑ |Ω |

l=1 dl-
A
9l

;∀ 9 ∈ J
end
if (A > 1) then

Update the largangian parameter: ZA
9l
←− ZA−1

9l
+ ^A−1(-A

9l
− -̄A−1

9
);∀ 9 ∈ J , l ∈ Ω

Update the penalty parameter: ^A ←− Δ?^A−1

end
if the acceptance criterion is satisfied then

terminate← true
else

A ← A + 1
end

end
Output:

The best-known solution for location and routing decisions

2.4.3 Implementing Parallel Processing Techniques

As discussed in Section 2.4.1, in each iteration of the PHA algorithm, |Ω| number of individual

scenario-specific subproblems are solved. Even though we employ a heuristic method, referred to

as SIGALNS heuristic, to solve the location-routing subproblems, the overall algorithm may still

find it difficult to solve realistic size problem instances of [EV-SAT] in a reasonable timeframe. In

this sub-section, we develop a synchronous master-slave implementation for the proposed hybrid

algorithm. The aim of this enhancement is to exploit the multiprocessing capabilities of the local

computers and reduce the computational time in solving each iteration of the PHA algorithm. Note
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that the parallel execution of the hybrid algorithm does not impact the quality of the PHA solutions,

as the search process adheres to the same dynamics as in the sequential case.

In this implementation, the master is in charge of initializing and updating the Lagrangian and

penalty parameters for the PHA. Then, it follows by allocating the scenario-specific subproblems,

i.e., [EV-SAT(PHA)], to the slaves. The slaves proceed by solving the respective subproblems

using the SIGALNS algorithm. Once all the subproblems are solved by the slaves, the master

collects the local information from the slaves and calculates the new overall solution. Then, if the

termination criteria are not satisfied, the master updates the value of the penalty parameters and

starts the next iteration; otherwise, the master terminates the implementation. The duties of the

master and slave are summarized below.

Master:

• Creates a pool of the PHA subproblems

• Assigns each slave an equal number of PHA subproblems

• Check the load of slaves and adjusts the assignments

• Calculate the overall solution and update the penalty parameters

Slave:

• Solves the scenario-specific subproblems using the SIGALNS algorithm

• Store the optimal solution of the subproblems in a pool accessible by the master

2.5 Computational Study

This section first describes the data used in the proposed model formulation. Next, the computa-

tional performance of the solution approaches is discussed. Finally, an illustrative case study is
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presented using Fargo, North Dakota (ND), as a testing ground. All numerical experiments are

coded in Python 2.7 on a desktop computer equipped with an Intel Core i7 processor 3.60 GHz

and a 32 GB RAM. The optimization solver used is GUROBI Optimizer 9.0.

2.5.1 Data description and parameter settings

We assume that a depot is located in the center of the test region (see Figure 2.2(a)). Then, by

observing the different neighbors’ population densities (>10,000 people) within 200 miles squared

distance from the depot location, 25 customer locations are selected, as shown in Figure 2.2(a).

Likewise, 50 potential charging station locations are selected by using the same selection criteria

but for a population density of more than 5,000 (see Figure 2.2(b)). To calculate the distance and

time between each origin-destination pair, we utilize a google tool, Distance Matrix API1. Our

model uses Tesla Model 3 Long Range EV as a test case, which can travel up to 3<0G = 322 miles

with a weight carrying capacity of X4 =417 kg2. The weight of the customer demands (W8l) is

generated randomly using a normal distribution with a mean of 60 and a standard deviation of 10.

The fixed installation cost of a single port DCFC is set to be $2,500, which is amortized over 10

years [84]. The unit distance cost is set to be 28 9 4 = $1.

After running several preliminary experiments, the following parameters are set for the ALNS

and SIGALNS algorithms. For the SIGALNS algorithm, the following parameters are set as

follows: Φ1 = 0.07, Φ2 = 0.92, and Φ2 = 0.01. We initialized different parameters of the ALNS

algorithm as follows: o1 = 0.1, o2 = 0.3, dF = dA = 10, Z1 = 0.6, Z2 = 0.4, U1 = U3 = 0.9

and U2 = U4 = 0.1. Finally, for the ALNS and SIGALNS algorithms, the maximum number of

iterations is fixed to 50 and 200, respectively.
1Available from: https://developers.google.com/maps/documentation/distance-matrix/start
2Available from: https://www.tesla.com/model3
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(a) Location of customers and depot (b) Potential location of the charging sta-
tions

Figure 2.2

Illustration of the dataset

2.5.2 Computational performance of the proposed algorithms

This section evaluates the computational performance of the proposed solution techniques in

solving the model [EV-SAT]. To do so, we vary the number of customers, |I |, and EVs, |E |, to

generate 5 different problem instances. Table 2.1 shows the number of variables and constraints

associated with each test instance. For all these instances, the size of the potential charging station

locations, |J |, is set to be 50. In the following, the computational performance of the proposed

solution techniques under these generated test instances is discussed.

First, we aim to explore GUROBI solver’s performance in solving model [EV-SAT]. Note that

we incorporated the variable fixing techniques and valid inequalities discussed in subsection 2.3.1

in reporting the solver performance. All the solution approaches introduced in this subsection

are tested under three different temperatures: -10>�, 10>�, and 30>�. Table 2.2 reports how the

computational performance of the GUROBI and PHA-SIGALNS algorithm are varied under different
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Table 2.1

Test instances for model [EV-SAT]

Instance Variables Total Constraints|I | |E | Binary Continous Total
S1 5 1 3,242 171 3,413 9,518
S2 10 2 7,614 372 7,986 22,496
S3 15 3 10,079 593 10,672 35,831
S4 20 4 20,498 864 21,362 60,782
S5 25 5 29,310 1,155 30,465 86,990

temperature and test instances. The columns heading under 60?1(%) and )1(B) represent the

optimality gap and solution time of GUROBI, respectively. Similarly, columns heading under

60?2(%), )2(B), and A2 represent the solution gap3, solution time, and number of iterations of

the PHA-SIGALNS algorithm. In running the experiments, the optimality gap and time limit for

GUROBI are set to 5% and 36,000 seconds, respectively. As shown in Table 2.2, the GUROBI solver

is able to solve 10/15 instances by obeying the prespecified termination criterion. However, the

average running time of the solver is considerably high, given the size of the test instances. As

such, efficient solution methods are needed to provide quality solutions in a reasonable time.

We now evaluate the performance of the hybrid algorithm, referred to as the PHA-SIGALNS

algorithm, in solving the instances of model [EV-SAT] under varying temperatures (see results in

Table 2.2 for the performance of the algorithms under −10◦�, 10◦�, and 30◦� temperatures). It

is worth mentioning that we run each test instance five times to obtain the best feasible solution

and running time reported in Table 2.2. The corresponding results indicate that the proposed

hybrid algorithm can find quality solutions, with an optimality gap of 1.1%, 2.2%, and 3.0% for

the test instances, when the temperature is -10>�, 10>�, and 30>�, respectively. Besides, the

3obtained by using this formula: |(>;%��−(���!#(−!��*'$�� |
!��*'$��

(%), where (>;%��−(���!#( is the solution ob-
tained by the PHA-SIGALNS algorithm and !��*'$�� is the lower bound obtained by the GUROBI solver
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PHA-SIGALNS algorithm can obtain such quality solutions in 5.3, 7.3, and 8.6 times faster than the

GUROBI solver, when the temperature is -10>�, 10>�, and 30>�, respectively.

Table 2.2

Performance of GUROBI and PHA-SIGALNS algorithm under different temperatures
Gurobi PHA-SIGALNS

Temperature �=BC0=24 60?1 (%) )1 (B) 60?2 (%) )2 (B) A1

-10◦�

S1 2.3 545.1 1.1 2,310.6 6
S2 2.7 3,843.3 1.5 2,692.5 7
S3 4.9 26,965.2 0.9 2,755.4 9
S4 4.9 32,659.9 1.6 3,092.8 6
S5 6.1 36,000.0 0.6 7,844.1 12

Average 4.2 20,002.7 1.1 3,739.1 8

10◦�

S1 0.4 387.8 4.2 1,462.2 5
S2 0.7 2,946.2 1.9 1,844.5 6
S3 3.8 24,795.1 0.3 2,973.1 8
S4 5.6 36,000.0 1.3 2,584.2 7
S5 6.1 36,000.0 3.1 4,849.2 9

Average 3.3 20,025.7 2.2 2,742.6 7

30◦�

S1 1.2 100.1 3.0 899.3 3
S2 0.7 447.3 4.8 1,320.5 5
S3 4.5 20,224.2 3.4 1,841.2 5
S4 4.9 36,000.0 2.2 2,779.8 7
S5 5.9 36,000.0 1.8 3,934.6 8

Average 3.4 18,554.3 3.0 2,155.1 5.6

To demonstrate the computation superiority of the parallelized hybrid algorithm, referred to

as PHA-SIGALNS-Pl, over the basic hybrid algorithm PHA-SIGALNS, we further experiment with

temperatures -10>�, 10>�, and 30>�, as shown in Table 2.3. Note that the column headings

60?3(%), )3(B), and A2 for the PHA-SIGALNS-Pl algorithm in this table represent the same

definitions as provided by the PHA-SIGALNS algorithm in Table 2.2. As can be observed in

Table 2.3, on average, the parallelized algorithm PHA-SIGALNS-Pl successfully reduced the

computational time of the PHA-SIGALNS algorithm while maintaining a competitive solution

quality. More specifically, such quality solutions in the PHA-SIGALNS-Pl algorithm are achieved
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in 2.6, 2.3, and 2.5 times faster than the PHA-SIGALNS algorithm. Overall, the PHA-SIGALNS-Pl

algorithm consistently provides high-quality feasible solutions in a reasonable timeframe within

our experimental ranges.

Table 2.3

Performance of PHA-SIGALNS and PHA-SIGALNS-Pl when temperature under different
temperatures
PHA-SIGALNS PHA-SIGALNS-Pl

Temperature �=BC0=24 60?2 (%) )2 (B) A1 60?3 (%) )3 (B) A2

-10◦�

s1 1.1 2,310.6 6 0.6 653.8 5
s2 1.5 2,692.5 7 0.5 1,008.5 7
s3 0.9 2,755.4 9 1.5 1,217.2 8
s4 1.6 3,092.8 6 1.2 1,524.3 7
s5 0.6 7,844.1 12.0 0.7 2,706.1 11

Average 1.1 3,739.1 8.0 0.9 1,422.0 7.6

10◦�

S1 4.2 1,462.2 5 3.6 481.8 4
S2 1.9 1,844.5 6 2.1 837.2 6
S3 0.3 2,973.1 8 1.8 1,048.6 7
S4 1.3 2,584.2 7 2.9 1,283.8 6
S5 3.1 4,849.2 9 3.8 2,234.1 10

Average 2.2 2,742.6 7.0 2.8 1,177.1 6.6

30◦�

S1 3.0 899.3 3 0.6 331.4 3
S2 4.8 1,320.5 5 4.4 647.7 5
S3 3.4 1,841.2 5 3.4 654.2 5
S4 2.2 2,779.8 7 2.2 1,040.4 6
S5 1.8 3,934.6 8 1.3 1,493.8 7

Average 3.0 2,155.1 5.6 2.4 833.5 5.2

2.5.3 Sensitivity Analysis

This subsection performs a set of sensitivity analyses to assess the model performance and to draw

managerial insights for the respective policymakers. To perform these experiments, the largest

instance, namely, (5 (25 customers) from Table 2.1, is used. In all the experiments, we study the

impact of ambient temperature along with other impacting factors such as charging time, initial
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SOC, the variability of SOC estimation parameters and mean value of the demand on the overall

system performance. The key lessons learned from the experiments are summarized below.

• Figure 2.3 denotes the impact of ambient temperature and charging time on EV DCFC

charging station location decisions and the overall system cost. For instance, when the

charging time of the EVs is set to its base value (75 minutes) and the ambient temperature

decreases from 10◦� (base ambient temperature) to −10◦�, the selection of the charging

stations and the overall system cost increases by approximately 25%, and 24.2%, respectively.

Figure 2.4 visualizes the EV DCFC charging station location decisions under different

ambient temperatures. Likewise, if the ambient temperature remains fixed, but the charging

time decreases, then more EV charging stations are getting selected. For instance, when the

ambient temperature is set to its base value (10◦�) and the charging time of EVs increases

from 75 minutes (base value) to 100 minutes, the selection of the charging stations decreases

by approximately 20%, and 19.1%, respectively. The results clearly indicate that the EV

DCFC charging station location decisions are highly sensitive to the ambient temperature

and charging time.

• Figure 2.5 shows the impact of ambient temperature and the initial state of charge of EVs

(B>20) on the DCFC charging station selection decisions and the overall system cost. To

run the experiments, we vary the ambient temperature between −10◦� and 30◦� and B>20

between 100 and 200 miles while keeping the recharging time fixed at 75 minutes (base

value). The results in Figure 2.5 indicate that the EV DCFC charging station location

decisions along with overall system cost are highly sensitive to both the ambient temperature
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(a) Change in Station Selection (b) Change in System Cost
Figure 2.3

Impact of temperature and charging time on EV DCFC charging station selection and system cost

and B>20. For instance, when the ambient temperature is 10◦� and the B>20 decreases from

200 miles to 100 miles, the number of located EV DCFC charging stations and the overall

system cost increases by approximately 62.5%, and 59.3%, respectively.

• The next experiments evaluate the impact of variations of SOC estimation parameters,

namely, `1 and `2, as well as ambient temperature on the DCFC charging station selection

decisions and the overall system cost (see Figure 2.6). At the same time, the B>20 and

charging time of EVs are fixed to their base values. Given the estimated values of _1, _2, and

_3, to generate the base value of scenario-specific values of `1 and `2 (ambient temperature

is fixed to 10◦�) [65], we utilize random distribution with a mean equal to 0.192 and 0.675,

respectively, and variance equal to 40% of the respective mean. Note that for experiments

referred to as low and high variability, the respective variance value is changed by 10% and

70% from their respective means. This experiment indicates that both the DCFC charging
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(a) −10◦� (b) 0◦� (c) 10◦�

(d) 20◦� (e) 30◦�
Figure 2.4

Illustration of charging station location decisions under different ambient temperatures
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(a) Change in Station Selection (b) Change in System Cost
Figure 2.5

Impact of temperature and initial SOC on EV DCFC charging station selection and system cost

station selection decisions and the overall system cost are susceptible to the variabilities

present in the uncertain values of `1 and `2 parameters. For instance, for the case when the

temperature is fixed to its base value (10◦�) and the variabilities drops from high to low

values, the located DCFC charging stations as well as the overall system cost decreases by

23.1% and 22.2%, respectively.

• In the final set of experiments, we assess the impact of the mean value of customers’ demand

and the ambient temperature on the DCFC charging station selection decisions and the

overall system cost, while keeping the other parameters fixed to their base values. To run

the experiments, we change the mean demand by −30% and 30%, respectively, to generate

the low and high demand scenarios. The experimental results signify the importance of

customers’ demand on the DCFC charging station selection decisions and the overall system

cost. For instance, when the ambient temperature is fixed to it’s base value (10◦�) and the
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(a) Change in Station Selection (b) Change in System Cost
Figure 2.6

Impact of temperature and SOC parameters on EV DCFC charging station selection and system
cost

mean customers’ demand drops from high to low values, the located DCFC charging stations

and the overall system cost decreases by 15.3% and 15.9%, respectively.
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CHAPTER III

CONCLUSIONS

3.1 Conclusion

The first chapter proposes a mixed-integer linear programming model to minimize the EV

DCFC infrastructure and the associated routing decisions under fluctuating ambient tempera-

ture.Two highly customized heuristic approaches, namely, the two-phase Tabu Search-modified

Clarke and Wright (TS-MCWS) algorithm and the Sweep-based Iterative Greedy Adaptive Large

Neighborhood (SIGALNS) algorithm, are proposed to efficiently solve the optimization model.

Both the algorithms’ performance is tested under varying temperature, where SIGALNS are found

consistent in providing high-quality feasible solutions in a reasonable timeframe. For instance, the

SIGALNS algorithm is 2.7 and 2.4 times faster than TS-MCWS algorithm under 10 ◦� and 30

◦�, respectively. Results indicate that the EV DCFC siting decisions are highly sensitive to the

ambient temperature. For instance, when the ambient temperature decreases from 10 ◦� to -10 ◦�,

the number of DCFC charging stations increases by approximately 141% (150 customers). The

resultant siting decisions further increase the system cost by approximately 14.9%. We believe the

insights gained from this study could help decision-makers efficiently design and manage DCFC

EV logistic networks for cities that suffer from high-temperature fluctuations.
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The second chapter proposes a two-stage mixed-integer programming model to formulate the

EV DCFC infrastructure siting and the associated EV routing decisions under fluctuating ambient

temperature and customer demand uncertainty. We then developed a highly customized solution

technique PHA-SIGALNS, which combines Progressive Hedging algorithm with SIGALNS heuristic

to efficiently solve the proposed optimization model in a reasonable timeframe. Further, we employ

a master-slave architecture to speed up the solution time of the PHA-SIGALNS algorithm without

sacrificing the solution quality. Testing the proposed algorithms’ performance indicates that the

parallelized heuristic outperforms other algorithms under different ambient temperatures. For

instance, the parallelized heuristic, PHA-SIGALNS-PI, can solve the test instances 2.6 and 2.5

times faster compared to the PHA-SIGALNS algorithm, when the ambient temperature is −10◦�

and 30◦�, respectively. Experimental results reveal that the EV DCFC siting and routing decisions

are highly sensitive to fluctuations of the ambient temperature. For instance, it can be observed that

if the ambient temperature drops from 10◦� to −10◦�, the number of located charging stations and

the overall system cost is increased by 63.5% and 59.3%, respectively. We believe the managerial

insights drawn from this study may help decision-makers designing a reliable and robust DCFC

EV logistic network for a region with high weather variability.

Finally, we used Fargo city in North Dakota in both chapters as a testing ground to visualize

the modeling results and to draw managerial insights.
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3.2 Future Research Directions

This study paves the way to efficiently designing the DCFCEV logistic networks under ambient

temperature and stochastic environment. This research can be extended in several directions. In

VRP literature and reality, constraints such as time windows and battery swap stations (BSS)

capacity are common problems; hence, we will consider such constraints in the formulation in

future research. Second, it would be interesting to investigate how the stochasticity of a number

of other parameters, such as travel time and EV load, impacts the model performance. Third,

considering the uncertainty in travel times, the impact of the EV load on the battery depleting, and

security of charging infrastructures issues [58, 59, 60], this study could bring greater benefits to

DCFC EV logistic networks. Next, efforts will continue to developing more sophisticated solution

techniques to efficiently solve the problem in a reasonable timeframe.then, the proposed model

could be implemented in other geographic regions with varying climatic and traffic conditions to

draw managerial insights for decision-makers. Finally, we will attempt to develop more efficient

techniques to solve the larger instance of the problem in a reasonable time frame.These issues will

be addressed in future studies.
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